Разнообразие структурных блоков [M(IO3)6] в семействах иодатов и новая тригональная разновидность Cs2HIn(IO3)6

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В гидротермальных условиях получены кристаллы новой структурной высокосимметричной разновидности Cs2HIn(IO3)6, которая кристаллизуется в пр. гр. R3 с параметрами элементарной ячейки: a = 11.8999(4), c = 11.6513(5) Å. Проведено кристаллохимическое сравнение с исследованной ранее триклинной модификацией. Обе структуры составлены из изолированных блоков [In(IO3)6]3–. Новая разновидность входит в семейство тригональных иодатов, изоструктурных соединению K2Ge(IO3)6. Рассмотрена локальная симметрия отдельных блоков [M(IO3)6] (M = Ge, Ti, Sn, Ga, In и ряд других металлов) и предложена структурная систематика семейств иодатов на основе сравнительного кристаллохимического анализа. Обсуждается влияние катионного состава и условий синтеза на симметрию и топологию кристаллических структур, а также влияние локальной симметрии отдельных блоков на физические свойства соединений.

Полный текст

Доступ закрыт

Об авторах

О. В. Реутова

Московский государственный университет им. М.В. Ломоносова

Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

Россия, Москва

Е. Л. Белоконева

Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

Россия, Москва

А. С. Волков

Сколковский институт науки и технологий

Email: elbel@geol.msu.ru
Россия, Москва

О. В. Димитрова

Московский государственный университет им. М.В. Ломоносова

Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

Россия, Москва

Список литературы

  1. Sun C.-F., Yang B.-P., Mao J.-G. // Sci. China Chem. 2011. V. 54. P. 911. https://doi.org/10.1007/s11426-011-4289-8
  2. Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
  3. Guo S.-P., Chi Y., Guo G.-C. // Coord. Chem. Rev. 2017. V. 335. P. 44. https://doi.org/10.1016/j.ccr.2016.12.013
  4. Mao F.-F., Hu C.-L., Chen J. et al. // Chem. Commun. 2019. V. 55. P. 6906. https://doi.org/10.1039/c9cc02774b
  5. Jia Y.-J., Chen Y.-G., Guo Y. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 48. P. 17194. https://doi.org/10.1002/ange.201908935
  6. Chen J., Hu C.-L., Mao F.-F. et al. // Chem. Sci. 2019. V. 10. P. 10870. https://doi.org/10.1039/c9sc04832d
  7. Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
  8. Wu C., Lin L., Jiang X.X. et al. // Chem. Mater. 2019. V. 31. № 24. P. 10100. https://doi.org/10.1021/acs.chemmater.9b03214
  9. Abudouwufu T., Zhang M., Cheng S.C. et al. // Eur. J. Inorg. Chem. 2019. V. 25. P. 1221. https://doi.org/10.1002/chem.201804995
  10. Luo M., Liang F., Hao X. et al. // Chem. Mater. 2020. V. 32. № 6. P. 2615. https://doi.org/10.1021/acs.chemmater.0c00196
  11. Fan H.X., Lin C.S., Chen K.C. et al. // Angew. Chem. 2020. V. 59. P. 5268. https://doi.org/10.1002/anie.201913287
  12. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2098. https://doi.org/10.1002/anie.201813968
  13. Cao Z., Yue Y., Yao J. et al. // Inorg. Chem. 2011. V. 50. № 24. P. 12818. https://doi.org/10.1021/ic201991m
  14. Wu Q., Liu H., Jiang F. et al. // Chem. Mater. 2016. V. 28. P. 1413. https://doi.org/10.1021/acs.chemmater.5b04511
  15. Zhang M., Hu C., Abudouwufu T. et al. // Chem. Mater. 2018. V. 30. P. 1136. https://doi.org/10.1021/acs.chemmater.7b05252
  16. Mao F.-F., Hu C.-L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
  17. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Commun. 2019 V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
  18. Xu Y., Zhou Y., Lin C. et al. // Cryst. Growth Des. 2021. V. 21. P. 7098. https://doi.org/10.1021/acs.cgd.1c00992
  19. De Boer J.L., van Bolhuis F., Olthof-Hazekamp R.V. // Acta Cryst. 1966. V. 21 (5). P. 841. https://doi.org/10.1107/s0365110x66004031
  20. Liminga R., Abrahams S.C., Bernstein J.L. // J. Chem. Phys. 1975. V. 62. P. 4388. https://doi.org/10.1063/1.430339
  21. Jansen M. // Solid State Chem. 1976. V. 17. P. 1.
  22. Liang J.K., Wang C.G. // Acta Chim. Sin. 1982. V. 40. P. 985.
  23. Schellhaas F., Hartl H.T., Frydrych R. // Acta Cryst. B. 1972. V. 28. № 9. P. 2834.
  24. Phanon D., Bentria B., Jeanneau E. et al. // Z. Krist. 2006. V. 221. P. 635.
  25. Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. № 11. P. 1123. https://doi.org/10.1039/B612677D
  26. Shehee T.C., Pehler S.F., Albrecht-Schmitt T.E. // J. Alloys Compd. 2005. V. 388. P. 225. https://doi.org/10.1016/j.jallcom.2004.07.037
  27. Chang H.-Y., Kim S.-H., Ok K.M., Halasyamani P.S. // J. Am. Chem. Soc. 2009. V. 131. № 19. P. 6865. https://doi.org/10.1021/ja9015099
  28. Sun C.-F., Hu C.-L., Kong F. et al. // Dalton Trans. 2010. V. 39. P. 1473. https://doi.org/10.1039/B917907K
  29. Kim Y.H., Tran T.T., Halasyamani P.S., Ok K.M. // Inorg. Chem. Front. 2015. V. 2. P. 361. https://doi.org/10.1039/C4QI00243A
  30. Yang B.P., Hu C.L., Xu X., Mao J.G. // Inorg. Chem. 2016. V. 55. № 5. P. 2481. https://doi.org/10.1021/acs.inorgchem.5b02859
  31. Liu H., Jiang X., Wang X. et al. // J. Mater. Chem. C. 2018. V. 6. P. 4698. https://doi.org/10.1039/c8tc00851e
  32. Liu K., Han J., Huang J. et al. // RSC Adv. 2021. V. 11. P. 10309. https://doi.org/10.1039/d0ra10726c
  33. Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 2263. https://doi.org/10.1021/ic048428c
  34. Belokoneva E.L., Karamysheva A.S., Dimitrova O.V., Volkov A.S. // Crystallography Reports. 2018. V. 63. P. 734. https://doi.org/10.1134/S1063774518050048
  35. Xiao L., You F., Gong P. et al. // Cryst. Eng. Commun. 2019. V. 21. P. 4981. https://doi.org/10.1039/c9ce00814d
  36. Liu X., Li G., Hu Y. et al. // Cryst. Growth Des. 2008. V. 8. № 7. P. 2453. https://doi.org/10.1021/cg800034z
  37. Mitoudi Vagourdi E., Zhang W., Denisova K. et al. // ACS Omega. 2020. V. 5. № 10. P. 5235. https://doi.org/10.1021/acsomega.9b04288
  38. Yang B.-P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. № 5. P. 1055. https://doi.org/10.1039/c0dt01272f
  39. Реутова О.В., Белоконева Е.Л., Димитрова О.В., Волков А.С. // Кристаллография. 2020. T. 65. № 3. C. 441. https://doi.org/10.31857/S0023476120030273
  40. Park G., Byun H.R., Jang J.I., Ok K.M. // Chem. Mater. 2020. V. 32. P. 3621. https://doi.org/10.1021/acs.chemmater.0c01054
  41. Xu X., Hu C.-L., Yang B.-P., Mao J.-G. // CrystEngComm. 2013. V. 15. № 38. P. 7776. https://doi.org/10.1039/C3CE41185K
  42. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 1. С. 59. https://doi.org/10.1134/S1063774518010029
  43. Gurbanova O.A., Belokoneva E.L. // Crystallography Reports. 2006. V. 51. P. 577. https://doi.org/10.1134/S1063774506040067
  44. CrysAlisPro Software System, Version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK, 2014.
  45. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  46. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
  47. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
  48. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
  49. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
  50. Qian Z., Wu H., Yu H. et al. // Dalton Trans. 2020. V. 49. P. 8443. https://doi.org/10.1039/D0DT00593B
  51. Hector A.L., Henderson S.J., Levason W., Webster M. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 198. https://doi.org/10.1002/1521-3749(200201)628:1<198::AID-ZAAC198>3.0.CO;2-L
  52. Yeon J., Kim S.-H., Halasyamani P.S. // J. Solid State Chem. 2009. V. 182. № 12. P. 3269. https://doi.org/10.1016/j.jssc.2009.09.021
  53. Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
  54. Chen X., Xue H., Chang X. et al. // J. Alloys Compd. 2005. V. 398. P. 173. https://doi.org/10.1016/j.jallcom.2005.01.050
  55. Hebboul Z., Galez C., Benbertal D. et al. // Crystals. 2019. V. 9. P. 464. https://doi.org/10.3390/cryst9090464
  56. Chikhaoui R., Hebboul Z., Fadla M.A. et al. // Nanomaterials. 2021. V. 11. № 12. P. 3289. http://doi.org/10.3390/nano11123289
  57. Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Проекция структуры: боковая Cs2HIn(IO3)6 (а); тригонального Cs2HIn(IO3)6 вдоль тройной оси (б); триклинного Cs2HIn(IO3)6 вдоль тройной оси псевдоромбоэдрической ячейки (в).

Скачать (295KB)
3. Рис. 2. Центросимметричные блоки [M(IO3)6] с точечной симметрией с различной конфигурацией в структурах иодатов семейства: АnM(IO3)6 (A = Na, K, Rb, Cs, Ag, Tl+, H3O+, Ba, Sn2+; M = Ge, Ti, Pt, Sn, Zr, Mo4+, Ga, In) (а); AM(IO3)6 (A = Ba, Sr; M = Ti, Sn) (б); SrTi(IO3)6 · 2H2O (в); M(IO3)3 (M = In, Sc, Tl) (г); M(IO3)3 (M = In, Sc, Tl) – соединение блоков в слой (д).

Скачать (172KB)
4. Рис. 3. Ацентричные блоки [M(IO3)6] (M = Ge, Ti) с точечной симметрией 3 в структурах водных иодатов BaGe(IO3)6 · H2O (а), BaTi(IO3)6 · 0.5H2O (б).

Скачать (71KB)
5. Рис. 4. Блоки [Ta(IO3)6] и [Sc(IO3)6] с точечной псевдосимметрией 3 в структурах Cs3Ta(IO3)8 (а) и KSc(IO3)3Cl (б) соответственно, боковые проекции структур Cs3Ta(IO3)8 (в) и KSc(IO3)3Cl (г).

Скачать (352KB)
6. Рис. 5. Блок [Nb(IO3)6] с точечной симметрией 1 в псевдотригональной структуре (H3O)HCs2Nb(IO3) (а); проекция структуры (H3O)HCs2Nb(IO3)9 на плоскость ac (б).

Скачать (240KB)
7. Рис. 6. Конфигурация ацентричного блока [M(IO3)6] (M = Li, Ti, Sn, Pt, Al, Cr, Fe3+, Ga, In, Mg, Mn2+, Zn, Cd, Co, Ni, Cu2+) с точечной симметрией 3 в структурах гексагональных (пр. гр. P63) и псевдогексагональных (пр. гр. P21) иодатов (а); стержни из блоков [Li(IO3)6] в каркасе в α-LiIO3 (б); стержни из блоков [M(IO3)6] в структурах семейства A2M(IO3)6 (A = Li, Na, H3O+; M = Ti, Sn, Pt) (в); каркас из блоков [M(IO3)6] в структурах семейств M(IO3)3 (M = Al, Cr, Fe3+, In, Ga) и M(IO3)2 (M = Mg, Zn, Co, Ni, Cu2+, Mn2+) (г); каркас из блоков [M(IO3)6] и [Li(IO3)6] в структурах семейства LiM(IO3)3 (M = Mg, Zn, Cd) (д); каркас из чередующихся блоков [Zn(IO3)6] и [Li(IO3)6] в структуре LiZn(IO3)3 (пр. гр. P21) (е).

Скачать (322KB)
8. Рис. 7. Блоки [M(IO3)6] с псевдосимметрией 2/m в структурах α-K3In(IO3)6 и семействах A3M(IO3) (A = Na, K, Rb, Ag, Tl+; M = In, Tl, Fe3+, Mn3+) (а); 2/m в K3Sc(IO3)6 (б); m в Rb3Sc(IO3)6 (в).

Скачать (118KB)
9. Рис. 8. Блок [In(IO3)6] с симметрией 1 в структуре NaIn(IO3)4 (а); 1 в AgIn(IO3)4 (б); проекция цепочки из блоков [In(IO3)6] в структурах NaIn(IO3)4 (в) и AgIn(IO3)4 (г).

Скачать (158KB)
10. Рис. 9. Ацентричный блок [M(IO3)6] с симметрией 1 в структурах семейства AgM(IO3)4 (M = Ga, Mn3+) (а); цепочка из блоков в структурах AgGa(IO3)4 (б) и AgMn(IO3)4 (в).

Скачать (133KB)
11. Рис. 10. Центросимметричные блоки [M(IO3)6] (M = Sn, In) с симметрией 1 (а); их соединение в цепочки в структурах Sn(IO3)4 и LiIn(IO3)4 (б).

Скачать (73KB)
12. Рис. 11. Димеры [Mn2(IO3)10] (а); их соединение в каркас в структуре AgMn(IO3)3 (б).

Скачать (139KB)
13. Рис. 12. Проекция на плоскость ас структуры Cs5[Sc2(IO3)9](IO3)2 с каркасом из блоков [Sc(IO3)6] (а); отдельные блоки [Sc(IO3)6] c точечной симметрией 1 и 1 в структуре Cs5[Sc2(IO3)9](IO3)2 (б).

Скачать (311KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».