Рост сегнетоэлектрических доменов в полярном направлении

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Прямое прорастание доменов в полярном направлении исследовано на примере формирования изолированных клиновидных доменов и массивов доменов на неполярных срезах ниобата лития при приложении электрического поля зондом сканирующего зондового микроскопа. Рост доменов происходит за счет генерации ступеней и движения заряженных кинков вдоль заряженных доменных стенок. Моделирование пространственного распределения поля показало, что генерация ступеней вблизи вершины домена в основном вызвана воздействием внешнего поля, а прямое прорастание обусловлено движением кинков в поле, создаваемом соседними кинками. Сканирование зондом с приложенным напряжением приводит к самоорганизованному формированию массивов доменов с чередованием длин: удвоением, учетверением и хаотическим поведением под действием деполяризующих полей, создаваемых тремя соседними доменами.

Об авторах

В. Я. Шур

Институт естественных наук и математики, Уральский федеральный университет

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

Е. В. Пелегова

Институт естественных наук и математики, Уральский федеральный университет

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

А. П. Турыгин

Институт естественных наук и математики, Уральский федеральный университет

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

М. С. Кособоков

Институт естественных наук и математики, Уральский федеральный университет

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

Ю. М. Аликин

Институт естественных наук и математики, Уральский федеральный университет

Автор, ответственный за переписку.
Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

Список литературы

  1. Tagantsev A.K., Cross L.E., Fousek J. Domains in ferroic crystals and thin films. Berlin: Springer, 2010. 822 p. https://doi.org/10.1007/978-1-4419-1417-0
  2. Newnham R.E., Miller C.S., Cross L.E. et al. // Phys. Status Solidi. 1975. V. 32. P. 69. https://doi.org/10.1002/pssa.2210320107
  3. Wada S. // Ferroelectrics. 2009. V. 389. P. 3. https://doi.org/10.1080/00150190902987335
  4. Shur V.Ya. // Advanced piezoelectric materials / Ed. Uchino K. Cambridge: Woodhead Publishing, 2017. P. 235. https://doi.org/10.1016/B978-0-08-102135-4.00006-0
  5. Fejer M.M., Magel G.A., Jundt D.H. et al. // IEEE J. Quantum Electron. 1992. V. 28. P. 2631. https://doi.org/10.1109/3.161322
  6. Hum D.S., Fejer M.M. // C. R. Phys. 2007. V. 8. P. 180. https://doi.org/10.1016/j.crhy.2006.10.022
  7. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Ferroelectrics. 2000. V. 236. P. 129. https://doi.org/10.1080/00150190008016047
  8. Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. // Appl. Phys. Rev. 2015. V. 2. P. 040604. https://doi.org/10.1063/1.4928591
  9. Классен-Неклюдова М.В., Чернышева М.А., Штернберг А.А. // Докл. АН СССР. 1948. Т. 18. С. 527.
  10. Matthias B., von Hippel A. // Phys. Rev. 1948. V. 73. P. 1378. https://doi.org/10.1103/PhysRev.73.1378
  11. Merz W.J. // Phys. Rev. 1954. V. 95. P. 690. https://doi.org/10.1103/PhysRev.95.690
  12. Little E.A. // Phys. Rev. 1955. V. 98. P. 978. https://doi.org/10.1103/PhysRev.98.978
  13. Le Bihan R. // Ferroelectrics. 1988. V. 97. P. 19. https://doi.org/10.1080/00150198908018081
  14. Gruverman A., Auciello O., Tokumoto H. // Annu. Rev. Mater. Sci. 1998. V. 28. P. 101. https://doi.org/10.1146/annurev.matsci.28.1.101
  15. Kholkin A.L., Kalinin S.V., Roelofs A., Gruverman A. // Scanning probe microscopy / Eds. Kalinin S., Gruverman A. New York: Springer, 2007. P. 173. https://doi.org/10.1007/978-0-387-28668-6_7
  16. Shur V.Ya. // Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications / Ed. Ye G.-Z. Cambridge: Woodhead Publishing, 2008. P. 622.
  17. Gopalan V., Mitchell T.E. // J. Appl. Phys. 1998. V. 83. P. 941. https://doi.org/10.1063/1.366782
  18. Shur V.Ya., Lobov A.I., Shur A.G. et al. // Appl. Phys. Lett. 2005. V. 87. P. 022905. https://doi.org/10.1063/1.1993769
  19. Alikin D.O., Ievlev A.V., Turygin A.P. et al. // Appl. Phys. Lett. 2015. V. 106. P. 182902. https://doi.org/10.1063/1.4919872
  20. Zalessky V.G., Fregatov S.O. // Phys. B. Condens. Matter. 2006. V. 371. P. 158. https://doi.org/10.1016/j.physb.2005.10.097
  21. Kokhanchik L.S., Borodin M.V., Shandarov S.M. et al. // Phys. Solid State. 2010. V. 52. P. 1722. https://doi.org/10.1134/S106378341008024X
  22. Volk T.R., Kokhanchik L.S., Gainutdinov R.V. et al. // Ferroelectrics. 2016. V. 500. P. 129. https://doi.org/10.1080/00150193.2016.1214527
  23. Ievlev A.V., Alikin D.O., Morozovska A.N. et al. // ACS Nano. 2015. V. 9. P. 769. https://doi.org/10.1021/nn506268g
  24. Turygin A.P., Alikin D.O., Alikin Yu.M. et al. // Materials. 2017. V. 10. P. 1143. https://doi.org/10.3390/ma10101143
  25. Lilienblum M., Soergel E. // J. Appl. Phys. 2011. V. 110. P. 052018. https://doi.org/10.1063/1.3623775
  26. Bühlmann S., Colla E., Muralt P. // Phys. Rev. B. 2005. V. 72. P. 214120. https://doi.org/10.1103/PhysRevB.72.214120
  27. Turygin A.P., Alikin D.O., Kosobokov M.S. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 36211. https://doi.org/10.1021/acsami.8b10220
  28. Ievlev A.V., Morozovska A.N., Eliseev E.A. et al. // Nat. Commun. 2014. V. 5. P. 4545. https://doi.org/10.1038/ncomms5545
  29. Kim Y., Bühlmann S., Hong S. et al. // Appl. Phys. Lett. 2007. V. 90. P. 072910. https://doi.org/10.1063/1.2679902
  30. Abplanalp M., Fousek J., Günter P. // Phys. Rev. Lett. 2001. V. 86. P. 5799. https://doi.org/10.1103/PhysRevLett.86.5799
  31. Ievlev A.V., Morozovska A.N., Shur V.Ya. et al. // Phys. Rev. B. 2015. V. 91. P. 214109. https://doi.org/10.1103/PhysRevB.91.214109
  32. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Appl. Phys. Lett. 2000. V. 76. P. 143. https://doi.org/10.1063/1.125683
  33. Shur V.Ya., Rumyantsev E.L., Batchko R.G. et al. // Phys. Solid State 1999. V. 41. P. 1681. https://doi.org/0.1134/1.1131068
  34. Muller M., Soergel E., Buse K. // Opt. Lett. 2003. V. 28. P. 2515. https://doi.org/0.1134/1.1131068
  35. Molotskii M., Agronin A., Urenski P. et al. // Phys. Rev. Lett. 2003. V. 90. P. 107601. https://doi.org/10.1103/PhysRevLett.90.107601
  36. Molotskii M., Rosenwaks Y., Rosenman G. // Annu. Rev. Mater. Res. 2007. V. 37. P. 271. https://doi.org/10.1146/annurev.matsci.37.052506.084223
  37. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Appl. Phys. Lett. 2000. V. 77. P. 3636. https://doi.org/10.1063/1.1329327
  38. Sluka T., Tagantsev A.K., Bednyakov P. et al. // Nat. Commun. 2013. V. 4. P. 1808. https://doi.org/10.1038/ncomms2839
  39. Campbell M.P., McConville J.P.V., McQuaid R.G.P. et al. // Nat. Commun. 2016. V. 7. P. 13764. https://doi.org/10.1038/ncomms13764
  40. Esin A.A., Akhmatkhanov A.R., Shur V.Ya. // Appl. Phys. Lett. 2019. V. 114. P. 092901. https://doi.org/10.1063/1.5079478
  41. Pertsev N.A., Kholkin A.L. // Phys. Rev. B. 2013. V. 88. P. 174109. https://doi.org/10.1103/PhysRevB.88.174109
  42. Agronin A., Molotskii M., Rosenwaks Y. et al. // J. Appl. Phys. 2006. V. 99. P. 104102. https://doi.org/10.1063/1.2197264
  43. Shur V.Ya., Ievlev A.V., Nikolaeva E.V. et al. // J. Appl. Phys. 2011. V. 110. P. 052017. https://doi.org/10.1063/1.3624798
  44. Shur V.Ya. // Nucleation theory and applications / Ed. Schmelzer J.W.P. Weinheim: Wiley-VCH, 2005. P. 178. https://doi.org/10.1002/3527604790.ch6
  45. Shur V.Ya. // J. Mater. Sci. 2006. V. 41. P. 199. https://doi.org/10.1007/s10853-005-6065-7
  46. Agronin A., Molotskii M., Rosenwaks Y. et al. // J. Appl. Phys. 2006. V. 99. P. 104102. https://doi.org/10.1063/1.2197264
  47. Greshnyakov E.D., Turygin A.P., Pryakhina V.I. et al. // J. Appl. Phys. 2022. V. 131. P. 214103. https://doi.org/10.1063/5.0093200
  48. Fatuzzo E., Merz W.J. Ferroelectricity. Amsterdam: North-Holland Publishing Company, 1967. P. 289.
  49. Miller R.C., Weinreich G. // Phys. Rev. 1960. V. 117. P. 1460. https://doi.org/10.1103/PhysRev.117.1460
  50. Cahn J.W. // Acta Metall. 1960. V. 8. P. 554. https://doi.org/10.1016/0001-6160(60)90110-3
  51. Shur V.Ya. // Ferroelectric thin films: synthesis and basic properties / Eds. Paz de Araujo C.A. et al. Amsterdam: Gordon & Breach Science Publishers, 1996. P. 153.
  52. Marwan N., Romano M.C., Thiel M. et al. // Phys. Rep. 2007. V. 438. P. 237. https://doi.org/10.1016/j.physrep.2006.11.001

Дополнительные файлы


© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».