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Abstract. The reflection coefficient of medium-energy electrons (about 10 KeV) was calculated for their 
normal incidence on a thin growing single-crystal film. It is shown that in this case a quantum size effect 
occurs, which manifests itself in harmonic oscillations of the intensity of the reflected beam. The amplitude 
and period of oscillations depend on the thickness of the growing film and the energy of the incident 
electrons. A graphic illustration of the results obtained is provided.
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INTRODUCTION

Oscillations of the specular and diffracted beam 
intensity in the diffraction pattern obtained from a 
growing single-crystal film were first observed in [1–3]. 
The oscillation period was equal to the deposition time of 
one monomolecular Ga + As layer, equal to c/2, where 
c is the GaAs lattice period. In [2], it was assumed that 
these oscillations were associated with a periodic change 
in the surface roughness of the growing crystal, caused 
by the formation of two-dimensional nuclei on the 
atomically smooth surface, their growth and unification 
into a continuous monolayer, the formation of nuclei of 
the next layer, etc. In subsequent years, a series of works 
were published in which this phenomenon was studied 
and used to investigate the mechanism and kinetics of 
epitaxial layer growth [4–8].

However, in [9] it was shown that, along with 
scattering from the film surface, in this experimental 
situation there should be a reflection of electrons from 
the volume of the growing heteroepitaxial film, which 
leads to a modulation of the intensity of short-wave 
oscillations caused by scattering on the surface, and 
long-wave oscillations caused by the quantum size effect 
in the volume of the single-crystal film.

The quantum size effect of electrons in thin 
metal and semiconductor films has been well studied 
both theoretically and experimentally [10]. Initially, 
when modeling the particle scattering process, the 
electrostatic potential in the film was chosen in the form 
of a rectangular well. Since the experimental observation 
of the effect requires that the electron wavelength be 
comparable to or greater than the inhomogeneities on 

the film surface, it was necessary to take the particle 
energy of the order of units of electron volts and less. 
In this case, the electron wavelength was of the order of 
units of angstroms, which is comparable to the surface 
roughness. At higher energies, the inhomogeneities in the 
film significantly exceed the particle wavelength. Thus, 
the rectangular well model prohibited the experimental 
observation of the effect at high electron energies.

 The situation changes when analyzing the scattering 
of electrons on a single-crystal film, since Bloch waves 
are formed in it, the length of which varies from the 
period of the crystal lattice to the film thickness in each 
allowed zone of the one-dimensional crystal, which is 
significantly greater than the film inhomogeneity. The 
scattering of waves and particles on a one-dimensional 
limited periodic potential of a single-crystal film was 
first theoretically investigated in [11–18]. In [19], 
an expression was obtained for the one-dimensional 
quantum size effect taking into account the average 
internal potential of the lattice of the single-crystal film. 
This extremely capacious formula has been repeatedly 
used for the theoretical consideration of various models 
for the manifestation of this effect.

In [20], the quantum size effect was investigated 
taking into account the inelastic absorption of electrons 
in the film and a comparison of the theory with 
experiment was made. In [9, 20], an experimental 
situation was described in which a beam of electrons 
falls on a growing heteroepitaxial film at a small grazing 
angle and the intensity of the diffraction pattern is 
recorded. 

In contrast, in [21] the situation of normal incidence 
of electrons on a thin single-crystal film is theoretically 
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investigated. In this case, epitaxial growth of the film does 
not occur, and the energy of the incident electrons varies in 
a small range near the value of ~10 keV. Calculations show 
the appearance of oscillations of the intensity of reflected 
electrons caused by the quantum size effect. Previously, 
this effect at such high energies was not theoretically 
studied and was not observed experimentally. Its 
manifestation with such a large amplitude of oscillations 
is due to the fact that it is a single-crystal film that is 
being studied. In it, the passing electrons propagate in 
the form of Bloch waves and therefore the quantum size 
effect appears on them in the form of oscillations of the 
intensity of reflected electrons of large amplitude.

In [22], the same model of the effect was theoretically 
investigated as in [21], but the energy of the incident 
particles was taken to be ~100 keV. It was shown that even 
at such high energies, the oscillations of the intensity of 
the reflected electrons have a significant amplitude.

In this work, unlike [21, 22], the normal incidence 
of an electron beam of medium (~10 keV) energy on a 
growing heteroepitaxial film is considered. However, the 
argument in the formulas is no longer the electron energy, 
but the thickness of the growing film. It turns out that, as in 
the case of a grazing incidence of particles [9], a significant 
manifestation of the quantum size effect takes place.

SELECTION OF MODEL  
AND CALCULATION FORMULAS

Fig. 1 shows a diagram of the potential energy 
acquired by an electron falling normally on a single-
crystal film. Analytically, it is given by the following 
formula:
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Here с is the period of the one-dimensional lattice, N 
is the number of periods in it, i.e. the number of planes in 
the film parallel to its surface, V0 0> � is the height of the 
potential step at the film boundaries, δ(x) is the Dirac delta 
function, U = 2πy/c2 is the “power” of the δ-function 
potential, y is the dimensionless parameter of the model, 
ћ is the Planck’s constant, m is the electron mass, x is the 
coordinate along the axis perpendicular to the film surface.

Solving the stationary Schrödinger equation with 
this potential, we obtain the following expressions for 
the transmission coefficients T and reflection R [19]:
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Fig. 1. Scheme of the potential energy of an electron in a film: V0 is the value of the average internal energy, N is the number of 
monolayers in the film parallel to the surface, c is the period of the one-dimensional lattice, t is the amplitude of the transmitted wave, 
r is the amplitude of the reflected wave.
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where the modulus of the Bloch wave vector μ is 
determined from the dispersion equation:

	 cos cos sin�c kc
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� �. 	 (3)

Here k is the modulus of the electron wave 
vector in the region with potential energy –V0, 
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electron energy E of the incident beam (specified in eV), 
V0 is the magnitude of the potential jump at the film 
boundaries, also specified in electron volts. The grazing 
angle α is measured in degrees, the moduli of the wave 
vectors λ and k are obtained in inverse angstroms. The 
reflection coefficient R T= −1 .

Note that the factor 0.0268 in the expressions for 
λ and k given above is a dimensional coefficient whose 
numerical value is 0.0268 and whose dimension is 
[Å–2 ∙ eV–1]. 

Detailed recommendations for the computational 
algorithm in the case where the right-hand side of the 
dispersion equation (3) becomes greater than one are 
given in [19].

Formula (2) takes on a particularly simple form 
when the average internal potential is not taken into 
account, i.e. when V0 = 0. Then:
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DISCUSSION OF RESULTS

Let us consider the dependences of the reflection 
coefficient R on the beam electron energy R(E) for a 
film with a thickness of cN = 200 Å. We will use them 
to select the particle energy for further study during film 
growth. In Fig. 2, the dependences R(E) are shown for 
c = 5 Å, y = –1, V0 = 10 eV. These values ​​were selected 
based on the following considerations. The lattice period 
c = 5 Å corresponds to the average value of interplanar 
distances of planes with small crystallographic indices in 
most crystals. The value of the parameter y = –1 leads 
to a forbidden band between the valence and conduction 
bands of the crystal of the order of units of electron volts, 
which corresponds to the real situation. V0 = 10 eV is a 
typical average value of the internal energy of electrons 
in crystals.

In Fig. 2a, sharp intense peaks are visible. They are 
explained by diffraction on a one-dimensional grating 
and are described by a modified Wulff-Bragg formula. 
The distance between the peaks is
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where En is the energy corresponding to the n-th peak. 
The derivation of this formula is given in [22]. In 
Fig. 2b, on an enlarged scale, we see that the reflection 
intensity noticeably oscillates between the peaks. These 
oscillations are one of the manifestations of the quantum 
size effect and become especially clear with an even 
greater increase in scale (Fig. 2c).

In Fig. 2c we select the energy value E = 10520 eV, 
corresponding to the position of one of the diffraction 
peaks, and substitute it into formula (1) as a parameter. 
After that, we calculate R(N) at this energy value, 
which corresponds in the experiment to recording the 
reflection intensity depending on the thickness of the 
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Fig. 2. Graphs of the R(E) dependence in different scales for 
c = 5 Å, y = –1, V0 = 10 eV.
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growing heteroepitaxial film at a given energy of the beam 
electrons. Fig. 3a shows this dependence. It is evident 
that the intensity of the diffraction peaks is equal to unity 
approximately at a thickness of Nc = 1000 Å. There are 
no oscillations corresponding to the quantum size effect. 
They appear if we shift slightly in energy (Fig. 2c) to the 
right. The value of the oscillation envelope at the energy 
E = 10524 eV in this figure corresponds to the oscillation 
amplitude in Fig. 3b, which shows the dependence R(N) 
at the beam energy E = 10524 eV. It is evident that the 
oscillations have a significant amplitude and a period of 

350  Å. That is, these are long-wave oscillations similar 
to those that appear during a grazing incidence of a 
beam [9]. With an even greater shift in energy to the right 
E  =  10528  eV (Fig. 2c), we obtain oscillations with a 
smaller amplitude and period (Fig. 3c). 

Next, we calculate the intensity of the reflected 
beam taking into account the inelastic absorption and 
scattering of electrons in the film. To do this, we multiply 
R(N) by the empirical factor

	 S cN= −( )exp æ ,	

where the attenuation coefficient ӕ is 0.01, which is 
typical for a beam energy of E = 10 keV. The attenuation 
coefficient is the sum of the absorption coefficient and 
the scattering coefficient. We obtain an approximate 
empirical formula:

	 I I R N S N= ( ) ( )1 ,	

I1 is set equal to one. Note that the last formula 
is approximate and only qualitatively reflects the 
experimental situation. However, since the calculations 
are model ones, we consider this choice justified. 
The results are shown in Fig. 4. Case (a) corresponds 0
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Fig. 3. Graph of the R(N) dependence for three beam energy 
values: a – the energy value lies in the forbidden zone, b, c – in 
the allowed zone.
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Fig. 4. Dependence of the reflected beam intensity on the 
thickness of the growing film, taking into account the attenuation 
caused by the absorption and scattering of electrons, for two 
energy values.
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to the beam energy Е = 10524 eV, and variant 
(b) – E = 10528 eV. It is evident that, compared to the 
situation of grazing incidence of the beam [20], the 
decrease in the reflection intensity is not as sharp. This 
is due to the fact that the attenuation coefficient in the 
case of normal incidence is smaller.

Until now, the influence of film roughness on the 
reflection of electrons from its surface has not been 
taken into account. At normal beam incidence, this 
phenomenon has not been studied either theoretically 
or experimentally. Let us assume that the formula for 
the reflection intensity is similar to the case of grazing 
beam incidence [20, 23]:

	 I I I R N S N N= + ( ) ( ) −( )1
2

20 1 cos .π ϕ  	 (6)

The results of calculations using formula (6) are 
shown in Fig. 5, where I0 1= . It is evident that short-
wave oscillations caused by scattering from the surface 
are modulated by long-wave oscillations caused by the 
quantum size effect in the film volume. A decrease in 
their intensity is also observed due to the absorption 
and scattering of electrons. The reflection curve exhibits 
similar behavior in theoretical calculations [20] and 
is observed experimentally [24] in the case of grazing 
incidence of the beam.

CONSIDERATIONS ON THE EXPERIMENTAL 
OBSERVATION OF THE EFFECT

Theoretical calculations were performed for a one-
dimensional potential model. We believe that such 
a model reflects the main characteristics of electron 
scattering by a growing film. In a three-dimensional 
picture, it is impossible to obtain an analytical expression 
for describing the quantum size effect. When a beam of 
medium and high energy electrons is reflected from a 
single crystal, either diffraction reflections or Kikuchi 
bands, or both are often observed [25, 26]. Therefore, 
when adjusting the energy of the beam reflected from a 

single-crystal substrate, it is necessary to choose a value 
lying within the allowed zone. In this case, its intensity is 
low (Fig. 2), so the background on the reflection curve is 
also low. The electron energy should also correspond to 
a value lying within the allowed one-dimensional zone 
and the growing single-crystal film, since only then can 
long-wave oscillations characteristic of the quantum size 
effect be observed. In this case, the reflection intensity 
is low (Fig. 2). Therefore, it is not possible to roughly 
estimate the oscillations. Equipment that records them 
is required. 

ON THE INTENSITY  
OF BRAGG REFLEXES

In [27], a formula was derived for the intensity of 
Bragg reflections that appear when varying the energy 
of electrons falling normally on a single-crystal film 
(Fig. 2). Below, we will repeat this derivation in more 
detail, and also continue to transform the previously 
obtained formula to a final simple expression.

It should be noted that the appearance of narrow 
resonance peaks is not at all associated with the quantum 
size effect, but is due to the well-known Wulff-Bragg 
formula:

	 2d nsin .α λ= 	 (7)

At normal incidence, the sine of the grazing angle 
is equal to one and the parameter in the resonance 
condition remains the wavelength of the radiation, 
which is determined by its energy. Since in this case the 
interplanar distance is d c= , and � �� 2 /k , the Wulff-
Bragg formula is written as

	 kc n� � .� 	 (8)

From it, formula (5) for the distances between peaks 
is derived in [22].

So, let us continue deriving the formula for the 
intensity of the Bragg peaks. Since their position is 
determined by condition (8) and at the same time 
µc  =  kc + πm, where m is an integer (formula (3)), 
then, substituting it into formula (4) and differentiating 
twice according to L’Hôpital’s rule the numerator and 
denominator of the fraction in the denominator of the 
right-hand side of equation (4), under condition (8) we 
obtain:
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In [27] a conclusion was made about the 
independence of the resonance peak intensity from its 
number n. This is an incorrect conclusion. The fact 
is that in (10) k depends on the energy E, i.e. on n. 
Let us show this. Let us substitute (8) into (10). Then, 
since

	 U
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It is evident that the intensity depends on N, i.e. 
on the number of reflecting planes in the film, in other 
words, on its thickness, depends on y – the scattering 
capacity of an individual crystallographic plane, and 
also on the number of the resonance peak n.

Let us give some examples for the values y = –1, 
N = 80. The intensity of the first peak (n = 1) is almost 
equal to one, the intensity of the Nth peak (n = N = 80) 
is equal to R = ½. Then, as the number n increases, the 
intensity decreases monotonically (11).

CONCLUSION

 It is shown that despite the fact that the electron 
energy is relatively high (10 keV), a quantum size 
effect is manifested in the growing single-crystal film 
at its normal incidence. It is expressed in harmonic 
oscillations of the reflected beam intensity depending 
on the thickness of the growing single-crystal film. An 
approximate formula is obtained that takes into account 
the weakening of the reflected beam intensity due to 
inelastic absorption and scattering of electrons, and the 
reflection coefficient is calculated using it.

Reflection curves are calculated in the case of short-
wave oscillations caused by reflection from the surface 
of a growing single-crystal film. It is shown that they are 
modulated by long-wave oscillations determined by the 
quantum size effect. 

In addition, it is noted that when the beam energy 
is varied, narrow resonance peaks are observed on the 
reflection curve. A formula is derived that determines 
their intensity, and an expression for the intervals 
between them is given.

Conditions conducive to experimental observation 
of the effect have been identified. 
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