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Abstract. The reflection coefficient of medium-energy electrons (about 10 KeV) was calculated for their
normal incidence on a thin growing single-crystal film. It is shown that in this case a quantum size effect
occurs, which manifests itself in harmonic oscillations of the intensity of the reflected beam. The amplitude
and period of oscillations depend on the thickness of the growing film and the energy of the incident
electrons. A graphic illustration of the results obtained is provided.
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INTRODUCTION

Oscillations of the specular and diffracted beam
intensity in the diffraction pattern obtained from a
growing single-crystal film were first observed in [1-3].
The oscillation period was equal to the deposition time of
one monomolecular Ga + As layer, equal to ¢/2, where
c is the GaAs lattice period. In [2], it was assumed that
these oscillations were associated with a periodic change
in the surface roughness of the growing crystal, caused
by the formation of two-dimensional nuclei on the
atomically smooth surface, their growth and unification
into a continuous monolayer, the formation of nuclei of
the next layer, etc. In subsequent years, a series of works
were published in which this phenomenon was studied
and used to investigate the mechanism and kinetics of
epitaxial layer growth [4—S8].

However, in [9] it was shown that, along with
scattering from the film surface, in this experimental
situation there should be a reflection of electrons from
the volume of the growing heteroepitaxial film, which
leads to a modulation of the intensity of short-wave
oscillations caused by scattering on the surface, and
long-wave oscillations caused by the quantum size effect
in the volume of the single-crystal film.

The quantum size effect of electrons in thin
metal and semiconductor films has been well studied
both theoretically and experimentally [10]. Initially,
when modeling the particle scattering process, the
electrostatic potential in the film was chosen in the form
of arectangular well. Since the experimental observation
of the effect requires that the electron wavelength be
comparable to or greater than the inhomogeneities on
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the film surface, it was necessary to take the particle
energy of the order of units of electron volts and less.
In this case, the electron wavelength was of the order of
units of angstroms, which is comparable to the surface
roughness. At higher energies, the inhomogeneities in the
film significantly exceed the particle wavelength. Thus,
the rectangular well model prohibited the experimental
observation of the effect at high electron energies.

The situation changes when analyzing the scattering
of electrons on a single-crystal film, since Bloch waves
are formed in it, the length of which varies from the
period of the crystal lattice to the film thickness in each
allowed zone of the one-dimensional crystal, which is
significantly greater than the film inhomogeneity. The
scattering of waves and particles on a one-dimensional
limited periodic potential of a single-crystal film was
first theoretically investigated in [11—18]. In [19],
an expression was obtained for the one-dimensional
quantum size effect taking into account the average
internal potential of the lattice of the single-crystal film.
This extremely capacious formula has been repeatedly
used for the theoretical consideration of various models
for the manifestation of this effect.

In [20], the quantum size effect was investigated
taking into account the inelastic absorption of electrons
in the film and a comparison of the theory with
experiment was made. In [9, 20], an experimental
situation was described in which a beam of electrons
falls on a growing heteroepitaxial film at a small grazing
angle and the intensity of the diffraction pattern is
recorded.

In contrast, in [21] the situation of normal incidence
of electrons on a thin single-crystal film is theoretically



94

investigated. In this case, epitaxial growth of the film does
not occur, and the energy of the incident electrons varies in
a small range near the value of ~10 keV. Calculations show
the appearance of oscillations of the intensity of reflected
electrons caused by the quantum size effect. Previously,
this effect at such high energies was not theoretically
studied and was not observed experimentally. Its
manifestation with such a large amplitude of oscillations
is due to the fact that it is a single-crystal film that is
being studied. In it, the passing electrons propagate in
the form of Bloch waves and therefore the quantum size
effect appears on them in the form of oscillations of the
intensity of reflected electrons of large amplitude.

In [22], the same model of the effect was theoretically
investigated as in [21], but the energy of the incident
particles was taken to be ~100 keV. It was shown that even
at such high energies, the oscillations of the intensity of
the reflected electrons have a significant amplitude.

In this work, unlike [21, 22], the normal incidence
of an electron beam of medium (~10 keV) energy on a
growing heteroepitaxial film is considered. However, the
argument in the formulas is no longer the electron energy,
but the thickness of the growing film. It turns out that, asin
the case of a grazing incidence of particles [9], a significant
manifestation of the quantum size effect takes place.

SHKORNYAKOV

SELECTION OF MODEL
AND CALCULATION FORMULAS
Fig. 1 shows a diagram of the potential energy
acquired by an electron falling normally on a single-
crystal film. Analytically, it is given by the following
formula:

N_}S(x —c(n- l)),

c c
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Here c is the period of the one-dimensional lattice, N
is the number of periods in it, i.e. the number of planes in
the film parallel to its surface, V;, > 0 is the height of the
potential step at the film boundaries, d(x) is the Dirac delta
function, U= 2my/c* is the “power” of the &-function
potential, y is the dimensionless parameter of the model,
# is the Planck’s constant, m is the electron mass, x is the
coordinate along the axis perpendicular to the film surface.

Solving the stationary Schrodinger equation with
this potential, we obtain the following expressions for
the transmission coefficients 7"and reflection R [19]:
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Fig. 1. Scheme of the potential energy of an electron in a film: ¥} is the value of the average internal energy, N is the number of
monolayers in the film parallel to the surface, c is the period of the one-dimensional lattice, 7 is the amplitude of the transmitted wave,

ris the amplitude of the reflected wave.
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where the modulus of the Bloch wave vector u is
determined from the dispersion equation:

3)

Here k is the modulus of the electron wave
vector in the region with potential energy —V,,

) = nJ0.0268E, ,k = m,J0.0268(E, + V).  Where

E = (sin2 (%)]E is the normal component of the

cU .
cospc = coskc + ﬁsmkc.

electron energy E of the incident beam (specified in eV),
V, is the magnitude of the potential jump at the film
boundaries, also specified in electron volts. The grazing
angle a is measured in degrees, the moduli of the wave
vectors A and k are obtained in inverse angstroms. The
reflection coefficient R=1-T.

Note that the factor 0.0268 in the expressions for
A and k given above is a dimensional coefficient whose
numerical value is 0.0268 and whose dimension is
[A-2-eV1].

Detailed recommendations for the computational
algorithm in the case where the right-hand side of the
dispersion equation (3) becomes greater than one are
given in [19].

Formula (2) takes on a particularly simple form
when the average internal potential is not taken into
account, i.e. when V; = 0. Then:

1
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DISCUSSION OF RESULTS

Let us consider the dependences of the reflection
coefficient R on the beam electron energy R(E) for a
film with a thickness of ¢N =200 A. We will use them
to select the particle energy for further study during film
growth. In Fig. 2, the dependences R(F) are shown for
c=5A,y=—1, V,= 10 eV. These values were selected
based on the following considerations. The lattice period
¢ =5 A corresponds to the average value of interplanar
distances of planes with small crystallographic indices in
most crystals. The value of the parameter y = —1 leads
to a forbidden band between the valence and conduction
bands of the crystal of the order of units of electron volts,
which corresponds to the real situation. ¥V, =10 eV is a
typical average value of the internal energy of electrons
in crystals.

In Fig. 2a, sharp intense peaks are visible. They are
explained by diffraction on a one-dimensional grating
and are described by a modified Wulftf-Bragg formula.
The distance between the peaks is

np o NE
" Jo.0268c2
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where E, is the energy corresponding to the n-th peak.
The derivation of this formula is given in [22]. In
Fig. 2b, on an enlarged scale, we see that the reflection
intensity noticeably oscillates between the peaks. These
oscillations are one of the manifestations of the quantum
size effect and become especially clear with an even
greater increase in scale (Fig. 2¢).

In Fig. 2¢ we select the energy value £ = 10520 eV,
corresponding to the position of one of the diffraction
peaks, and substitute it into formula (1) as a parameter.
After that, we calculate R(/N) at this energy value,
which corresponds in the experiment to recording the
reflection intensity depending on the thickness of the
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Fig. 2. Graphs of the R(E) dependence in different scales for
c=5A,y=—1,V,=10¢V.
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growing heteroepitaxial film at a given energy of the beam
electrons. Fig. 3a shows this dependence. It is evident
that the intensity of the diffraction peaks is equal to unity
approximately at a thickness of Nc¢ = 1000 A. There are
no oscillations corresponding to the quantum size effect.
They appear if we shift slightly in energy (Fig. 2c) to the
right. The value of the oscillation envelope at the energy
E = 10524 €V in this figure corresponds to the oscillation
amplitude in Fig. 3b, which shows the dependence R(N)
at the beam energy E = 10524 eV. It is evident that the
oscillations have a significant amplitude and a period of
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Fig. 3. Graph of the R(N) dependence for three beam energy
values: a — the energy value lies in the forbidden zone, b, ¢ — in
the allowed zone.
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350 A. That is, these are long-wave oscillations similar
to those that appear during a grazing incidence of a
beam [9]. With an even greater shift in energy to the right
FE = 10528 eV (Fig. 2c), we obtain oscillations with a
smaller amplitude and period (Fig. 3c).

Next, we calculate the intensity of the reflected
beam taking into account the inelastic absorption and
scattering of electrons in the film. To do this, we multiply
R(N) by the empirical factor

S = exp(—acN),

where the attenuation coefficient & is 0.01, which is
typical for a beam energy of £ = 10 keV. The attenuation
coefficient is the sum of the absorption coefficient and
the scattering coefficient. We obtain an approximate
empirical formula:

1= LR(N)S(N),
I, is set equal to one. Note that the last formula
is approximate and only qualitatively reflects the
experimental situation. However, since the calculations
are model ones, we consider this choice justified.
The results are shown in Fig. 4. Case (a) corresponds
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Fig. 4. Dependence of the reflected beam intensity on the
thickness of the growing film, taking into account the attenuation
caused by the absorption and scattering of electrons, for two
energy values.
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to the beam energy F = 10524 eV, and variant
(b) — E = 10528 eV. It is evident that, compared to the
situation of grazing incidence of the beam [20], the
decrease in the reflection intensity is not as sharp. This
is due to the fact that the attenuation coefficient in the
case of normal incidence is smaller.

Until now, the influence of film roughness on the
reflection of electrons from its surface has not been
taken into account. At normal beam incidence, this
phenomenon has not been studied either theoretically
or experimentally. Let us assume that the formula for
the reflection intensity is similar to the case of grazing
beam incidence [20, 23]:

1=31y+ LR(N)S(N)cos(2nN ~9). (o)
The results of calculations using formula (6) are
shown in Fig. 5, where 1, = L. It is evident that short-
wave oscillations caused by scattering from the surface
are modulated by long-wave oscillations caused by the
quantum size effect in the film volume. A decrease in
their intensity is also observed due to the absorption
and scattering of electrons. The reflection curve exhibits
similar behavior in theoretical calculations [20] and
is observed experimentally [24] in the case of grazing
incidence of the beam.

CONSIDERATIONS ON THE EXPERIMENTAL
OBSERVATION OF THE EFFECT

Theoretical calculations were performed for a one-
dimensional potential model. We believe that such
a model reflects the main characteristics of electron
scattering by a growing film. In a three-dimensional
picture, it is impossible to obtain an analytical expression
for describing the quantum size effect. When a beam of
medium and high energy electrons is reflected from a
single crystal, either diffraction reflections or Kikuchi
bands, or both are often observed [25, 26]. Therefore,
when adjusting the energy of the beam reflected from a
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Fig. 5. Short-wave oscillations modulated by long-wave
oscillations, taking into account the weakening of the beam
intensity.
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single-crystal substrate, it is necessary to choose a value
lying within the allowed zone. In this case, its intensity is
low (Fig. 2), so the background on the reflection curve is
also low. The electron energy should also correspond to
a value lying within the allowed one-dimensional zone
and the growing single-crystal film, since only then can
long-wave oscillations characteristic of the quantum size
effect be observed. In this case, the reflection intensity
is low (Fig. 2). Therefore, it is not possible to roughly
estimate the oscillations. Equipment that records them
is required.

ON THE INTENSITY
OF BRAGG REFLEXES

In [27], a formula was derived for the intensity of
Bragg reflections that appear when varying the energy
of electrons falling normally on a single-crystal film
(Fig. 2). Below, we will repeat this derivation in more
detail, and also continue to transform the previously
obtained formula to a final simple expression.

It should be noted that the appearance of narrow
resonance peaks is not at all associated with the quantum
size effect, but is due to the well-known Wulff-Bragg
formula:

2d sinol = n. (7)

At normal incidence, the sine of the grazing angle
is equal to one and the parameter in the resonance
condition remains the wavelength of the radiation,
which is determined by its energy. Since in this case the
interplanar distance isd = ¢, and ) = 2x /k , the Wulff-
Bragg formula is written as

®)

From it, formula (5) for the distances between peaks
is derived in [22].

So, let us continue deriving the formula for the
intensity of the Bragg peaks. Since their position is
determined by condition (8) and at the same time
uc = kc + mum, where m is an integer (formula (3)),
then, substituting it into formula (4) and differentiating
twice according to L’Hopital’s rule the numerator and
denominator of the fraction in the denominator of the
right-hand side of equation (4), under condition (8) we
obtain:

kc = mn.

1
r T 9)
1+(2k] N
From here: )
(%)
R=1-T= - (10)
cU N2
]+(2k)
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In [27] a conclusion was made about the
independence of the resonance peak intensity from its
number #n. This is an incorrect conclusion. The fact
is that in (10) k& depends on the energy F, i.e. on n.
Let us show this. Let us substitute (8) into (10). Then,
since

U= 2L2y
c
we obtain:
1 1
R = ] =— (11)
(CZUN ) N?
(21:}1)2

It is evident that the intensity depends on N, i.e.
on the number of reflecting planes in the film, in other
words, on its thickness, depends on y — the scattering
capacity of an individual crystallographic plane, and
also on the number of the resonance peak #.

Let us give some examples for the values y = —1,
N = 80. The intensity of the first peak (n = 1) is almost
equal to one, the intensity of the Nth peak (n = N = 80)
is equal to R = %. Then, as the number # increases, the
intensity decreases monotonically (11).

CONCLUSION

It is shown that despite the fact that the electron
energy is relatively high (10 keV), a quantum size
effect is manifested in the growing single-crystal film
at its normal incidence. It is expressed in harmonic
oscillations of the reflected beam intensity depending
on the thickness of the growing single-crystal film. An
approximate formula is obtained that takes into account
the weakening of the reflected beam intensity due to
inelastic absorption and scattering of electrons, and the
reflection coefficient is calculated using it.

Reflection curves are calculated in the case of short-
wave oscillations caused by reflection from the surface
of a growing single-crystal film. It is shown that they are
modulated by long-wave oscillations determined by the
quantum size effect.

In addition, it is noted that when the beam energy
is varied, narrow resonance peaks are observed on the
reflection curve. A formula is derived that determines
their intensity, and an expression for the intervals
between them is given.

Conditions conducive to experimental observation
of the effect have been identified.
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