LOWER HYBRID DRIFT WAVES IN THE DUSTY IONOSPHERE OF MARS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the ionosphere of Mars, dust can remain at high altitudes as a result of combustion of meteoric bodies and its subsequent condensation. These dust particles acquire charges under the influence of solar radiation, interaction with charged particles of the ionosphere and solar wind, and also as a result of the triboeffect. In such plasma-dust systems, various wave oscillations can occur. In particular, taking into account the inhomogeneities of the plasma concentration of Martian plasma-dust clouds and the presence of a magnetic field of Mars, although weak, but significant for these processes, it is possible to excite lower hybrid drift waves. The conditions under which the propagation of lower hybrid drift waves in the dusty plasma of the ionosphere of Mars and the development of modulation instability of these waves are possible are considered. A possible connection is shown between the occurrence of low-frequency noise on Mars and the development of lower hybrid drift turbulence in plasma-dust systems of Mars, in which sufficiently large electric fields are observed. The influence of the magnetic field on the excitation of lower hybrid drift waves is shown and it is calculated for which regions of the magnetic field in the dust clouds of Mars lower hybrid drift waves of certain frequency ranges can be excited.

Авторлар туралы

T. Morozova

Space Research Institute

Email: timoroz@yandex.ru
Moscow, Russia

S. Popel

Space Research Institute

Moscow, Russia

Әдебиет тізімі

  1. Hsia J.H., Chiu S.M., Hsia M.F. et al. Generalized lower-hybrid-drift instability // The Physics of Fluids. 1979. V. 22. Iss. 9. P. 1737–1746.
  2. Davidson R.C., Gladd N.T., Wu C.S. et al. Effects of finite plasma beta on the lower-hybrid-drift instability // The Physics of Fluids. 1977. V. 20. Iss. 2. P. 301–310.
  3. Sotnikov V.I., Shapiro V.D., Shevchenko V.I. On the nonlinear theory of current instability of short-wave drift oscillations // Physica D: Nonlinear Phenomena 2.1. 1981. P. 170–184.
  4. Bingham R., Shapiro V.D., Tsytovich V.N. et al. Theory of wave activity occurring in the AMPTE artificial comet // Physics of Fluids B: Plasma Physics. 1991. V. 3. Iss. 7. P. 1728–1738.
  5. Drake J.F., Guzdar P.N., Hassam A.B. et al. Nonlinear Mode Coupling Theory of the Lower-Hybrid-Drift Instability. 1983. Art.ID. NRLMR5209.
  6. Rudakov L.I., Tsytovich V.N. Strong langmuir turbulence // Physics Reports. 1978. V. 40. Iss. 1. P. 1–73.
  7. Veriaev A.A., Tsytovich V.N. Modulation instability of the lower-hybrid waves // Physica Scripta. 1979. V. 20. Iss. 3–4. P. 346–352.
  8. Tsytovich V.N., Vladimirov S.V., Popel S.I. On modulational interaction of lower-hybrid waves // Physica Scripta. 1992. V. 46. Iss. 1. P. 65–72.
  9. Fedorova A.A., Montmessin F., Korablev O. et al. Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season // Science. 2020. V. 367. Iss. 6475. P. 297–300.
  10. Montmessin F., Bertaux J.L., Quemerais E. et al. Subvisible CO2 ice clouds detected in the mesosphere of Mars // Icarus. 2006. V. 183. Iss. 2. P. 403–410.
  11. Montmessin F., Gondet B., Bibring J.P. et al. Observations of water vapor in the Martian atmosphere from the OMEGA/Mars Express instrument // J. Geophys. Res. 2007. V. 112. Art.ID. E11590.
  12. Whiteway J.A., Konguem L., Dickinson C. et al. Mars water-ice clouds and precipitation // Science. 2009. V. 325. Iss. 5936. P. 68–70.
  13. Резниченко Ю.С., Дубинский А.Ю., Попель С.И. Innsanov-mukasa система в марсианской ионосфере // Физика плазмы. 2023. T. 49. № 1. С. 57–66.
  14. Sauer K., Dubinin E., Baumgartel K. et al. Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma // Earth, planets and space. 1998. V. 50. Iss. 3. P. 269–278.
  15. Морозова Т.И., Попель С.И. К вопросу о плазменно-пылевых процессах, сопровождающих метеорные потоки // Физика плазмы. 2020. T. 46. № 11. С. 993–1006.
  16. Морозова Т.И., Попель С.И. Модуляционное взаимодействие в пылевой плазме хвостов метеороллов // Геомагнетизм и аэрономия. 2021. T. 61. № 6. С. 794–802.
  17. Peter K., Pätzold M., Molina-Cuberos G.J. et al. The lower dayside ionosphere of Mars from 14 years of MaRS radio science observations // Icarus. 2021. V. 359. Art.ID. 114213.
  18. González-Galindo F., Lopez-Valverde M.A., Angelas i Coll M. et al. Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models // J. Geophys. Res. 2005. V. 110. Art.ID. E09008.
  19. Pätzold M., Tellmann S., Häusler B. et al. A sporadic third layer in the ionosphere of Mars // Science. 2005. V. 310(5749). Art.ID. 837.
  20. Anbar A.D., Allen M., Nair H.A. Photodissociation in the atmosphere of Mars: Impact of high resolution, temperature-dependent CO2 cross-section measurements // J. Geophysical Research: Planets. 1993. V. 98. Iss. E6. P. 10925–10931.
  21. Pätzold M., Tellmann S., Häusler B. et al. A sporadic third layer in the ionosphere of Mars // Science. 2005. V. 310. Iss. 5749. P. 837–839.
  22. Бронштэн В.А. Планета Марс. Москва: Наука, 1977. 97 с.
  23. Bertaux J.L., Leblanc F., Witasse O. et al. Discovery of an aurora on Mars // Nature. 2005. V. 435. Iss. 7043. P. 790–794.
  24. Purucker M.E., Clark D.A. Mapping and interpretation of the lithospheric magnetic field // Geomagnetic observations and models. Dordrecht: Springer Netherlands, 2010. P. 311–337.
  25. Li S., Lu H., Cao J. et al. Global electric fields at mars inferred from multifluid hall-MHD simulations // Astrophysical J. 2023. V. 949. Iss. 2. Art.ID. 88.
  26. Akbari H., Andersson L., Peterson W. et al. Ambipolar Electric Field in the Martian Ionosphere: MAVEN Measurements // J. Geophysical Research: Space Physics. 2019. V. 124. Iss. 6. P. 4518–4524.
  27. Melnik O., Parrot M. Electrostatic discharge in Martian dust storms // J. Geophysical Research: Space Physics. 1998. V. 103. Iss. A12. P. 29107–29117.
  28. Harrison R.G., Barth E., Esposito F. et al. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity // Space Science Reviews. 2016. V. 203. P. 299–345.
  29. Farrell W.M., Desch M.D. Is there a Martian atmospheric electric circuit? // J. Geophysical Research: Planets. 2001. V. 106. Iss. E4. P. 7591–7595.
  30. Farrell W.M., Desch M.D., Kaiser M.L. et al. Radio and optical detection of Martian dust storm discharges // Acta Astronautica. 2000. V. 46. Iss. 1. P. 25–36.
  31. Farrell W.M., Kaiser M.L., Desch M.D. et al. Detecting electrical activity from Martian dust storms // J. Geophysical Research: Planets. 1999. V. 104(E2). Art.ID. 37953801.
  32. Kozakiewicz J., Kulak A., Kubisz J. et al. Extremely low frequency electromagnetic investigation on Mars // Earth, Moon, and Planets. 2016. V. 118. Iss. 2. P. 103–115.
  33. Morozova T.I., Popel S.I. Modulational Instability of Electromagnetic Waves on Mars Associated with Dust Acoustic Mode // Plasma physics reports. 2024. V. 50. Iss. 7. P. 822–828.
  34. Popel S., Vladimirov S., Tsytovich V. Theory of modulational interactions in plasmas in the presence of an external magnetic field // Physics Reports. 1995. V. 259. P. 327–404.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).