Argon–water system at low temperatures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The molecular dynamics method is used to simulate argon solutions in water and a thin water film–argon system at low temperatures. The correlation in motions of two closely spaced argon atoms is of another nature than the correlation of two neon atoms in a neon solid solution in ice II. The structure of hydrate shells of argon atoms contains five-membered rings composed of water molecules. The solubility of argon in a water film at low temperatures is noticeably higher than at room temperature. If a water film is first cooled to the glassy state and then argon atoms are added to it, then approximately as many argon atoms are absorbed on the film surface as they are present in a cooled film in equilibrium with the argon atmosphere. Argon atoms migrate from one pit to another on the rough surface of a solid water film.

作者简介

G. Malenkov

Frumkin Institute of Physical Chemistry and Electrochemistry

编辑信件的主要联系方式.
Email: egor38@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017