Characterization and Thermal Study of Schiff-Base Monomers and Its Transition Metal Polychelates and Their Photovoltaic Performance on Dye Sensitized Solar Cells


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Azo dye monomer 4,4′-(4,4′-biphenylylenebisazo)-disalicylaldehyde-4n-butylphenyl aniline (H2A) is synthesised by the reaction of 4,4′-bis[(salicylaldehyde-5)-azo]biphenyl (Azo) and n-butylaniline in the 1:2 molar ratio and its metal polychelates are also synthesized with Co(II), Ni(II), Cu(II), and Zn(II) metal ions. The synthesized compounds are characterized by 1H, 13C NMR, Fourier transform infrared (FT-IR) spectroscopy, electronic spectra (UV-Vis), elemental analysis (C, H, N, O), gas chromatography-mass (GCmass) spectrometry, magnetic susceptibility and molar conductivity techniques. Thermal properties of the title compounds are studied using the thermogravimetric analysis (TGA). The metal molar ratio in all of the polychelates is found to be consistent with 1:1 (metal/ligand) stoichiometry. The influence of organic dyes H2A and the [CuA(H2O)2]n polychelate are investigated as photosensitizers on the photovoltaic parameters by current–voltage (I–V) measurements on TiO2 photoelectrode dye sensitized solar cells (DSSCs). The [CuA(H2O)2]n metal polychelate demonstrates the best performance as compared to the cell sensitized with H2A.

Sobre autores

S. Al-Barody

Department of Chemistry, College of Science

Autor responsável pela correspondência
Email: sadeemaaa@yahoo.com
Iraque, Baghdad

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018