Design of a new rotary molecular machine based on nitrogen inversion: a DFT investigation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Ab initio calculations are employed to investigate nitrogen inversion as a configuration change that can supply an extremely useful switchable control mechanism for some complex systems. In this paper, the design of a new artificial rotary molecular machine based on nitrogen inversion is discussed. The introduced design of a molecular rotator is based on the reciprocating motion of a substituent due to the inversion phenomenon, leading to the rotary motion in the molecule. Since simple secondary amines easily face the inversion process at room temperature, aziridine is selected as the initial driver for the molecular motion. The most obvious finding from this study is that, following the displacement of the substituent attached to the aziridine nitrogen atom, two rotary motions occurr in the molecule, one clockwise and another counterclockwise with a 39.52° to 150.09° angle domain.

Sobre autores

S. Gorgani

Young Researchers and Elite Club, Central Tehran Branch

Email: Mar.samadizadeh@iauctb.ac.ir
Irã, Tehran

M. Samadizadeh

Faculty of Basic Science, Department of Chemistry, Central Tehran Branch

Autor responsável pela correspondência
Email: Mar.samadizadeh@iauctb.ac.ir
Irã, Tehran

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016