Fluid migration regimes during the formation of the unconformity-related uranium deposits of the Alligator Rivers Uranium Field, Australia
- 作者: Pek A.A.1, Malkovsky V.I.1, Petrov V.A.1
-
隶属关系:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
- 期: 卷 66, 编号 2 (2024)
- 页面: 146-170
- 栏目: Articles
- URL: https://bakhtiniada.ru/0016-7770/article/view/259838
- DOI: https://doi.org/10.31857/S0016777024020028
- EDN: https://elibrary.ru/yrvkfx
- ID: 259838
如何引用文章
详细
In world U production, the unconformity-related deposits currently yield ~24%. The main unconformity-
related deposits were found in the Athabasca U-bearing province in the southwestern part of the Canadian Shield and Alligator Rivers Uranium Field of the North Australian Shield. The deposits are localized close to the surfaces of structural-stratigraphic unconformity in the bottom of sedimentary basins: Athabasca in Canada and Kombolgie in Australia. According to a series of geological–structural parameters of formation, the Canadian and Australian unconformity-related deposits significantly differ allowing their classification as subtypes. In the Canadian deposits, the ore bodies occur both above and beneath the unconformity surface of the Athabasca basin, whereas the ores of the Australian deposits are localized exclusively beneath the unconformity surface in rocks of the basement of the Kombolgie basin. This paper is devoted to the reconstruction of paleohydrodynamic formation conditions of the Australian unconformity-related deposits. The computer models of fluid migration of following three scenarios were successively considered during the analysis of fluid mass transfer processes: (i) thermal fluid convection in a fault zone with periodic upward and downward free thermal fluid convection, (ii) forced convective fluid migration at subcritical permeability and therefore the absence of free thermal convection in the fault zone, and (iii) mixed convection with upward and downward fluid movement along the fault zone. We concluded that the processes of periodic thermal convective fluid circulation in the fault zone contradict the idea of infiltration mechanism of the formation of the Australian unconformity-related deposits in fault zones in the basement of the Kombolgie basin. We, therefore, considered possible influence of facies zoning of a combined aquifer in the basement of clastic sediments of the Kombolgie Supergroup on paleohydrodynamics of the ore-bearing system, which played the role of a main migration pass for U-transporting fluids. The analysis of zonal distribution of primary sedimentation environments and later diagenetic transformations of rocks of aquifers and aquitards of this basin allowed us to substantiate an idea on leading influence of zonal decrease in permeability of rocks of the combined aquifer on a circulation structure of U-transporting fluids with the change in their lateral migration in the basement of sedimentary deposits of the Kombolgie Supergroup on the downward infiltration along a transverse zone of the ore-controlling fault. This circulation of the structure of U-transporting fluids was accepted as a hypothesis of paleohydrodynamic formation conditions of Australian unconformityrelated deposits exclusively in rocks of the basement of the Kombolgie basin. The additional computer calculations, however, showed that a trend of the directed change in the permeability of rocks along the lateral movement pass of U-transporting fluids is a trigger condition, which can be responsible both for the upward and downward fluid movement along the ore-bearing fault zone depending on the direction of the trend. In the Kombolgie basin in Australia, the direction of this trend depended on the change of facies conditions on the regional migration pass of diagenetic fluids, whereas the local topographic features of the unconformity surface could affect the Athabasca basin in Canada. At an alternative trend of variation in permeability along the lateral migration of U-transporting fluids, the proposed transport mechanism of the formation of the Australian unconformity-related deposits could probably contribute also to the formation both of infiltration and exfiltration Canadian unconformity-related deposits, which are described by a paleohydrodynamic interfault geothermal convection model.
全文:

作者简介
A. Pek
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: aapek@mail.ru
俄罗斯联邦, 119017, Moscow
V. Malkovsky
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Email: aapek@mail.ru
俄罗斯联邦, 119017, Moscow
V. Petrov
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Email: aapek@mail.ru
俄罗斯联邦, 119017, Moscow
参考
- Живов В.Л., Бойцов А.В., Шумилин М.В. Уран: геология, добыча, экономика. М.: РИС «ВИМС», 2012. 304 с.
- Жидовинов Н.Я., Староверов В.Н. Фациальный анализ: Учебное пособие // Саратов: Издательский центр «Наука», 2008. 200 с.
- Крашенинников Г.Ф. Учение о фациях. Учеб. пособие. M., «Высшая школа», 1971. 368 с.
- Кузнецов В.Г. Фации и фациальный анализ в нефтегазовой геологии: Учебник для вузов. М.: РГУ нефти и газа имени И.М. Губкина, 2012. 244 с.
- Мальковский В.И., Пэк А.А. Условия развития тепловой конвекции однофазного флюида в вертикальном открытом разломе // Известия РАН. Физика Земли. 2004. Т. 40. № 8. С. 70—78.
- Мальковский В.И., Пэк А.А., Скирров Р., Бастраков Е. О режимах миграции флюидов при формировании урановых месторождений несогласия в районе Аллигейтор-Риверс (Австралия) // Физико-химические и петрофизические исследования в науках о Земле: Матер. 20-й Междунар. конф. М.: 2019. С. 214—217.
- Пэк А.А., Мальковский В.И. Тепловая конвекция как возможный механизм формирования урановых месторождений типа несогласия в бассейне Атабаска (Канада) // Месторождения стратегических металлов: закономерности размещения, источники вещества, условия и механизмы образования: Матер. Всерос. конф. Москва 25—27 ноября. ИГЕМ РАН, 2015. С. 142—143.
- Пэк А.А., Мальковский В.И. Роль тепловой конвекции флюидов в формировании урановых месторождений типа несогласия: бассейн Атабаска (Канада) // Геология рудн. месторождений. 2017. Т. 59. № 3. С. 201—219.
- Пэк А.А., Мальковский В.И., Петров В.А. О формировании уникально богатых руд урановых месторождений несогласия бассейна Атабаска (Канада): гипотеза многоэтапного телескопированного отложения руд // Геология рудн. месторождений. 2022. Том 64. № 1. С. 73—92.
- Тарханов А.В., Бугриева Е.П. Значимость и перспективы геолого-промышленных типов урановых месторождений. М.: ВИМС, 2017. 106 с.
- Рединг X.Г. Обстановки осадконакопления и фации: В 2-х т. Т. I: Пер. с англ. под ред. X. Рединга. М.: Мир, 1990. 352 с.
- Шатский Н.С. Фации и формации (Грессли и его учение о фациях). Избранные труды. T. IV. М.: Наука, 1965. С. 219—232.
- Шумилин М.В. Урановые месторождения “несогласия”. Перспективы открытия в России // Минеральные ресурсы России. Экономика и управление. 2011. № 5. С. 70—75.
- Ahmad M., Hollis J.A. Chapter 5: Pine Creek Orogen: in Ahmad M. and Munson T.J. (compilers). ‘Geology and mineral resources of the Northern Territory’. Northern Territory Geological Survey, Special Publication 5. 2013. P. 5:1—5:133.
- Annesley I.R., Madore C., Portella P. Geology and thermotectonic evolution of the western margin of the Trans-Hudson Orogen: evidence from the eastern sub-Athabasca basement, Saskatchewan // Canadian J. Earth Science. 2005. 42. P. 573—597.
- Beaufort D., Patrier P., Laverret E., Bruneton P., Mondy J. Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers uranium field, Northern Territory, Australia // Econ. Geol. 2005. V. 100. P. 515—536.
- Binns R.A., McAndrew, Sun S-S. Origin of uranium mineralization at Jabiluka // Uranium in the Pine Creek geosyncline. Vienna. IAEA, 1980. P. 543—562.
- Boiron M.-C., Cathelineau M., Richard A. Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits // Geofluids. 2010. V. 10. P. 270—292.
- Card C.D. The origins of anomalously graphitic rocks and quartzite ridges in the basement to the southeastern Athabasca Basin // Summary of Investigations 2012, Volume 2, Saskatchewan Geological Survey, Sask. Ministry of the Economy, Misc. Rep. 2012—4.2, Paper A-6. 2012. 15 p.
- Card C. Altered pelitic gneisses and associated “Quartzite Ridges” Beneath the Southeastern Athabasca Basin: alteration facies and their relationship to uranium deposits along the Wollaston-Mudjatik Transition // Summary of Investigations 2013, Volume 2, Saskatchewan Geological Survey, Sask. Ministry of the Economy, Misc. Rep. 2013—4.2, Paper A-4., 2014. 23 p.
- Cui T., Yang J. and Samson I.M. Tectonic deformation and fluid flow: implications for the formation of unconformity-related uranium deposits // Econ. Geol. 2012. V. 107. P. 147—163.
- Derome D., Cuney M., Cathelineau M., Fabre C., Dubessy J., Bruneton P., Hubert A. A detailed fluid inclusion study in silicified breccias from the Kombolgie sandstones (Northern Territory, Australia): Inferences for the genesis of middle-Proterozoic unconformity-type uranium deposits // J. Geochem. Explor. 2003. V. 80. P. 259—275.
- Derome D., Cathelineau M., Fabre C., Boiron M.C., Banks D., Lhomme T., Cuney M. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: Application to mid-proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, northern territories Australia) // Chem. Geol. 2007. V. 237. P. 240—254.
- Fayek M., Kyser K. Characterization of multiple fluid events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan // Can. Mineral. 1997. V. 35. P. 627—658.
- Ferguson J., Ewers G.R., Donnelly Т.Н. Model for the development of economic uranium mineralization in the Alligator Rivers Uranium Field // Uranium in the Pine Creek geosyncline. Vienna. IAEA, 1980. P. 563—574.
- Gaboreau S., Beaufort D., Vieillard P., Patrier P. Aluminum phosphate-sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River uranium field, Northern Territories, Australia // Can. Mineral. 2005. V. 43. P. 83—827.
- Geological Classification of Uranium Deposits and Description of Selected Examples // IAEA TECDOC-1842. IAEA, Vienna. 2018. 417 p.
- Hiatt E.E., Kyser T.K., Fayek M., Polito P., Hollk G.J., Riciputi L.R. Early quartz cements and evolution of paleohydraulic properties of basal sandstones in three Paleoproterozoic continental basins: Evidence from in situ δ18O analysis of quartz cements // Chem. Geol. 2007. 238. P. 19—37.
- Hiatt E.E., Kyser T.K. Sequence stratigraphy, hydrostratigraphy, and mineralizing fluid flow in the Proterozoic Manitou Falls Formation, eastern Athabasca Basin, Saskatchewan // EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, (ed.) C.W. Jefferson and G. Delaney. Geological Survey of Canada, Bulletin 588. 2007. P. 489—506.
- Hiatt E.E., Kyser T.K., Polito P.A., Marlatt J., Pufahp P. The Paleoproterozoic Kombolgie subgroup (1.8 GA), McArthur Basin, Australia: sequence stratigraphy, basin evolution, and unconformity-related uranium deposits following the Great Oxidation Event // Can. Mineral. 2021. V. 59. P. 1049—1083.
- Hoeve J., Sibbald T.I.I. On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada // Econ. Geol. 1978. V. 73. № 8. P. 1450—1473
- Hoeve J., Sibbald T.I.I., Ramaekers P., Lewry J.F. Athabasca Basin unconformity-type uranium deposits: A special case of sandstone-type deposits? // Uranium in the Pine Creek geosyncline. Vienna. IAEA, 1980. P. 575—594.
- Jaireth S., Roach I.C., Bastrakov E., Liu S. Basin-related uranium mineral systems in Australia: A review of critical features // Ore Geol. Rev. 2015. V. 76. P. 360—394.
- Jefferson C.W., Thomas D.J., Gandhi S.S., Ramaekers P., Delaney G., Brisbin D., Cutts C., Quirt D., Portella P., Olson R.A. Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta: Geological Association of Canada Mineral Deposits Division, Special Publication no. 5. 2007. P. 273—305.
- Kyser T.K. Fluids, basin analysis and mineral deposits. Geofluids. 2007. V. 7. P. 238—257.
- Kyser K., Cuney M. Unconformity-related uranium deposits. Cuney M., Kyser K. (Eds.). Recent and Not-so-recent Development in Uranium Deposits and Implications for Exploration // Short Course Series. Mineralogical Association of Canada, Quebec. 2009. P. 161—219.
- Li Z., Bethune K.M., Chi G., Bosman S.A., Card C.D. Topographic features of the sub-Athabasca Group unconformity surface in the southeastern Athabasca Basin and their relationship to uranium ore deposits // Canadian Journal of Earth Science. 2015. 52. P. 903—920.
- Li Z., Chi G., Bethune K.M., Eldursi K., Thomas D., Quirt D., Ledru P. Synchronous egress and ingress fluid flow related to compressional reactivation of basement faults: the Phoenix and Gryphon uranium deposits, southeastern Athabasca Basin, Saskatchewan, Canada // Mineral. Deposita. 2018. 53. P. 277—292.
- Malkovsky V.I., Pek A.A. Onset of fault-bounded free thermal convection in a fluid-saturated horizontal permeable porous layer // Transport in Porous Media. 2015. 110. P. 25—39.
- Needham R.S. Geology of the alligator uranium field, Northern Territory, Australia // BMR Bulletin 224. 1988. 96 p.
- Pek A.A., Мalkovsky V.I. Linked thermal convection of the basement and basinal fluids in formation of the unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada // Geofluids. 2016. V. 16. Is. 5. P. 925—940.
- Polito P.A., Kyser T.K., Marlatt J., Alexabdre P., Bajwah Z., Drever G. Significance of alteration assemblages for the origin and evolution of the Proterozoic Nabarlek unconformity-related uranium deposit, Northern Territory, Australia // Econ. Geol. 2004. V. 99. P. 111—139.
- Polito P.A., Kyser T.K., Thomas D., Marlatt J., Drever G. Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, Northern Territory, Australia // Mineral. Deposita. 2005. 40. P. 257—288.
- Polito P.A., Kyser T.K., Alexandre P., Hiatt E.E., Stanley C.R. Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles // Australian J. Earth Sciences: An International Geoscience Journal of the Geological Society of Australia. 2011. 58:5. P. 453—474.
- Reipas K. Preliminary Economic Assessment for the Wheeler River Uranium Project, Saskatchewan, Canada // National Instrument 43—101 Technical Report Prepared for Denison Mines Corporation. 2016. 289 p.
- Skirrow R.G., Jaireth S., Huston D.L., Bastrakov E.N., Schofield A., van der Wielen S.E., Barnicoat A.C. Uranium mineral systems: Processes, exploration criteria and a new deposit framework. Geoscience Australia Record 2009/20 // 2009. 44 p.
- Skirrow R.G., Mercadier J., Armstrong, R., Kuske, T., Deloule E. The Ranger uranium deposit, northern Australia: Timing constraints, regional and ore-related alteration, and genetic implications for unconformity-related mineralization // Ore Geol. Rev. 2016. V. 76. 463—503.
- Uranium in the Pine Creek geosyncline. Vienna. IAEA. 1980. 712 p.
- Unconformity-related Uranium Deposits. IAEA-TECDOC-1857. IAEA, Vienna. 2018. 295 p.
补充文件
