Сходство спектров нуклеотидных замен митохондриальной ДНК человека, реконструированных через одно и многие поколения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью филогенетического анализа нуклеотидных последовательностей целых митохондриальных геномов (мтДНК), позволяющего исследовать генетические изменения на протяжении многих поколений, реконструирован спектр нуклеотидных замен (по L-цепи мтДНК) в популяциях Европы. Также проанализированы спектры нуклеотидных замен мтДНК, наблюдаемых в состоянии гетероплазмии (на уровне ≥ 1% и ≥ 5%) у детей первого поколения. Обнаружено, что спектры нуклеотидных замен, реконструированных через одно и многие поколения, практически не различаются по основным параметрам: по распределению пиримидиновых и пуриновых замен (с преобладанием транзиций T>C), соотношению числа транзиций и трансверсий. Анализ филогенетического дерева гаплотипов мтДНК у европейцев отчетливо выявил влияние отрицательного (очищающего) отбора на митохондриальный генофонд. Предполагается, что селективные процессы, направляющие эволюцию мтДНК в одном и многих поколениях, имеют сходный характер, то есть обусловлены отрицательным отбором. Обсуждается проблема появления и распространения мутаций в митохондриях клеток зародышевой линии.

Полный текст

Доступ закрыт

Об авторах

Б. А. Малярчук

Институт биологических проблем Севера Дальневосточного отделения Российской академии наук

Автор, ответственный за переписку.
Email: malyarchuk@ibpn.ru
Россия, Магадан, 685000

Список литературы

  1. Giles R.E., Blanc H., Cann H.M., Wallace D.C. Maternal inheritance of human mitochondrial DNA // Proc. Natl. Acad. Sci. USA. 1980. V. 77. P. 6715–6719. https://doi.org/10.1073/pnas.77.11.6715
  2. Case J.T., Wallace D.C. Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts // Somat. Cell Genet. 1981. V. 7. P. 103–108. https://doi.org/10.1007/BF01544751
  3. Howell N., Kubacka I., Mackey D.A. How rapidly does the human mitochondrial genome evolve? // Am. J. Hum. Genet. 1996. V. 59. P. 501–509.
  4. Lightowlers R.N., Chinnery P.F., Turnbull D.M., Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease // Trends Genet. 1997. V. 13. P. 450–455. https://doi.org/10.1016/s0168-9525(97)01266-3
  5. Just R.S., Irwin J.A., Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing // Forensic Sci. Int. Genet. 2015. V. 18. P. 131–139. https://doi.org/10.1016/j.fsigen.2015.05.003
  6. Skonieczna K., Malyarchuk B., Jawień A. et al. Heteroplasmic substitutions in the entire mitochondrial genomes of human colon cells detected by ultra-deep 454 sequencing // Forensic Sci. Int. Genet. 2015. V. 15. P. 16–20. https://doi.org/10.1016/j.fsigen.2014.10.021
  7. Wei W., Tuna S., Keogh M.J. et al. Germline selection shapes human mitochondrial DNA diversity // Science. 2019. V. 364. https://doi.org/10.1126/science.aau6520
  8. Taylor C.R., Kiesler K.M., Sturk-Andreaggi K. et al. Platinum-quality mitogenome haplotypes from United States populations // Genes. 2020. V. 11. https://doi.org/10.3390/genes11111290
  9. Shoubridge E.A., Wai T. Mitochondrial DNA and the mammalian oocyte // Curr. Topics in Developmental Biol. 2007. V. 77. P. 87–111. https://doi.org/10.1016/S0070-2153(06)77004-1
  10. Floros V.I., Pyle A., Dietmann S. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos // Nat. Cell. Biol. 2018. V. 20. P. 144–151. https://doi.org/10.1038/s41556-017-0017-8
  11. Wallace D.C., Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease // Cold Spring Harb. Perspect. Biol. 2013. V. 5. https://doi.org/10.1101/cshperspect.a021220
  12. Малярчук Б.А. Сравнительный анализ мутационных спектров митохондриальных геномов в популяциях человека // Мол. биология. 2023. Т. 57. № 5. С. 792–796. https://doi.org/10.31857/S0026898423050117
  13. Малярчук Б.А. Характеристика спектра нуклеотидных замен митохондриальной ДНК в популяциях человека в условиях высокогорья // Генетика. 2023. Т. 59. № 11. C. 1313–1318. https://doi.org/10.31857/S0016675823110085
  14. Mikhailova A.G., Mikhailova A.A., Ushakova K. et al. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand // Nucl. Ac. Res. 2022. V. 50. P. 10264–10277. https://doi.org/10.1093/nar/gkac779
  15. Turro E., Astle W.J., Megy K. et al. Whole-genome sequencing of patients with rare diseases in a national health system // Nature. 2020. V. 583. P. 96–102. https://doi.org/10.1038/s41586-020-2434-2
  16. Elson J.L., Turnbull D.M., Howell N. Comparative genomics and the evolution of human mitochondrial DNA: Assessing the effects of selection // Am. J. Hum. Genet. 2004. V. 74. P. 229–238. https://doi.org/10.1086/381505
  17. Li M., Schroeder R., Ko A., Stoneking M. Fidelity of capture-enrichment for mtDNA genome sequencing: Influence of NUMTs // Nucl. Ac. Res. 2012. V. 40. P. e137. https://doi.org/10.1093/nar/gks499
  18. Moilanen J.S., Majamaa K. Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA // Mol. Biol. Evol. 2003. V. 20. P. 1195–1210. https://doi.org/10.1093/molbev/msg121
  19. Kivisild T., Shen P., Wall D.P. et al. The role of selection in the evolution of human mitochondrial genomes // Genetics. 2006. V. 172. P. 373–387. https://doi.org/10.1534/genetics.105.043901
  20. Деренко М.В., Малярчук Б.А. Молекулярная филогеография населения Северной Евразии по данным об изменчивости митохондриальной ДНК. Магадан: СВНЦ ДВО РАН, 2010. 376 с.
  21. Малярчук Б.А. Анализ распределения нуклеотидных замен в генах митохондриальной ДНК человека // Генетика. 2005. Т. 41. № 1. С. 93–99.
  22. Galtier N., Enard D., Radondy Y. et al. Mutation hot spots in mammalian mitochondrial DNA // Genome Res. 2006. V. 16. P. 215–222. https://doi.org/10.1101/gr.4305906
  23. Ельцов Н.П., Володько Н.В., Стариковская Е.Б. и др. Роль естественного отбора в эволюции митохондриальных гаплогрупп Северо-Восточной Евразии // Генетика. 2010. Т. 46. № 9. С. 1247–1249.
  24. Литвинов А.Н., Малярчук Б.А., Деренко М.В. Характер молекулярной эволюции митохондриальных геномов русского населения Восточной Европы // Вестник СВНЦ ДВО РАН. 2020. № 2. С. 107–113. https://doi.org/10.34078/1814-0998-2020-2-107-113
  25. Cavadas B., Soares P., Camacho R. et al. Fine time scaling of purifying selection on human nonsynonymous mtDNA mutations based on the worldwide population tree and mother-child pairs // Hum. Mut. 2015. V. 36. P. 1100–1111. https://doi.org/10.1002/humu.22849
  26. Boucret L., Bris C., Seegers V. et al. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing // Hum. Rep. 2017. V. 32. P. 2101–2109. https://doi.org/10.1093/humrep/dex268
  27. Kang E., Wu J., Gutierrez N. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations // Nature. 2016. V. 540. P. 270–275. https://doi.org/10.1038/nature20592
  28. Fleischmann Z., Cote-L’Heureux A., Franco M. et al. Reanalysis of mtDNA mutations of human primordial germ cells (PGCs) reveals NUMT contamination and suggests that selection in PGCs may be positive // Mitochondrion. 2024. V. 74. P. 101817. doi: 10.1016/j.mito.2023.10.005

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».