The Effect of Pharmacological Agents on the Expression of the Genes of the Chaperone GrpE and Co-Chaperone IbpA in Escherichia coli Cells
- Autores: Smirnova S.V1, Kurkieva A.G1, Manukhov I.V2, Fomin V.V2, Abilev S.K1
-
Afiliações:
- Vavilov Institute of General Genetics of Russian Academic Science
- Moscow Institute of Physics and Technology
- Edição: Volume 61, Nº 12 (2025)
- Páginas: 44–53
- Seção: ОБЩАЯ ГЕНЕТИКА
- URL: https://bakhtiniada.ru/0016-6758/article/view/362708
- DOI: https://doi.org/10.7868/S3034510325120045
- ID: 362708
Citar
Resumo
Palavras-chave
Sobre autores
S. Smirnova
Vavilov Institute of General Genetics of Russian Academic Science
Email: s.v.smirnova.genet@gmail.com
Moscow, Russia
A. Kurkieva
Vavilov Institute of General Genetics of Russian Academic ScienceMoscow, Russia
I. Manukhov
Moscow Institute of Physics and TechnologyDolgoprudny, Russia
V. Fomin
Moscow Institute of Physics and TechnologyDolgoprudny, Russia
S. Abilev
Vavilov Institute of General Genetics of Russian Academic ScienceMoscow, Russia
Bibliografia
- Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology // Annu. Rev. Physiol. 1999. V. 61. P. 243–282. https://doi.org/10.1146/annurev.physiol.61.1.243
- Richter K., Haslbeck K., Buchner J. The heat shock response: Life on the verge of death // Mol. Cell. 2010. V. 40. P. 253–266. https://doi.org/10.1016/j.molcel.2010.10.006
- Mayer M.P. Gymnastics of molecular chaperones // Mol. Cell. 2010. V. 39. P. 321–331. https://doi.org/10.1016/j.molcel.2010.07.012
- Kampinga H.H., Hageman J., Vos M.J. et al. Guidelines for the nomenclature of the human heat shock proteins // Cell Stress Chaperones. 2009. V. 14. P. 105–111. https://doi.org/10.1007/s12192-008-0068-7
- Hartl F.U., Bracher A., Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis // Nature. 2011. V. 475. P. 324–332. https://doi.org/10.1038/nature10317
- Евгеньев М.Б., Гарбуз Д.Г., Зацепина О.Г. Белки теплового шока: функции и роль в адаптации к гипертермии // Онтогенез. 2005. Т. 36. С. 265–273.
- Белан Д.В., Екимова И.В. Белки теплового шока при конформационных болезнях мозга // Рос. физиол. журнал им. И.М. Сеченова. 2019. Т. 105. С. 1465–1485.
- Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. The Hsp70 chaperone network // Nat. Rev. Mol. Cell Biol. 2019. V. 20. P. 665–680. https://doi.org/10.1038/s41580-019-0133-3
- Gong W.J., Golic K.G. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration // Genetics. 2006. V. 172. P. 275–286. https://doi.org/10.1534/genetics.105.048793
- Zatsepina O.G., Przhiboro A.A., Yushenova I.A. et al. A Drosophila heat shock response represents an exception rather than a rule among Diptera species // Insect. Mol. Biol. 2016. V. 25. P. 431–449. https://doi.org/10.1111/imb.12235
- Asea A., Rehli M., Kabingu E. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4 // J. Biol. Chem. 2002. V. 277. P. 15028-15034. https://doi.org/10.1074/jbc.M200497200
- Calderwood S.K., Mambula S.S., Gray P.J. Jr., Theriault J. Rextracellular heat shock proteins in cell signaling // FEBS Lett. 2007. V. 581. P. 3689–3694. https://doi.org/10.1016/j.febslet.2007.04.044
- Ghosh A.K., Sinha D., Mukherjee S. et al. LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8+ T cells // Cytokine. 2015. V. 73. P. 44-52. https://doi.org/10.1016/j.cyto.2015.01.018
- Kakimura J., Kitamura Y., Takata K. et al. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins // FASEB J. 2002. V. 16. P. 601–603. https://doi.org/10.1096/fj.01-0530fje
- Guzhova I., Kislyakova K., Moskaliova O. et al. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stresstolerance // Brain Res. 2001. V. 914. P. 66–73. https://doi.org/10.1016/s0006-8993(01)02774-3
- Bobkova N.V., Garbuz D.G., Nesterova I.M. et al. Therapeutic effect of exogenous Hsp70 in mouse models of Alzheimer’s Disease // J. Alzheimers Dis. 2014. V. 38. P. 425–435. https://doi.org/10.3233/JAD-130779
- Evgen’ev M.B., Krasnov G.S., Nesterova I.V. et al. Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s Disease // J. Alzheimers Dis. 2017. V. 59. P. 415–426. https://doi.org/10.3233/JAD-170398
- De Mena L., Chhangani D., Fernandez-Funez P., Rincon-Limas D.E. Sec Hsp70 as a tool to approach amyloid-β42 and other extracellular amyloids // Fly. 2017. V. 11. P. 179–184. https://doi.org/10.1080/19336934.2017.1291104
- Hervás R., Oroz J. Mechanistic insights into the role of molecular chaperones in protein misfolding diseases: From molecular recognition to amyloid disassembly // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21239186
- Zhao K., Zhou G., Liu Y. et al. HSP70 family in cancer: Signaling mechanisms and therapeutic advances // Biomolecules. 2023. V. 13. P. 601. https://doi.org/10.3390/biom13040601
- Nadin S.B., Vargas-Roig L.M., Drago G. et al. Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients // Cancer Lett. 2007. V. 252. P. 131–146. https://doi.org/10.1016/j.canlet.2006.12.028
- Dubrez L., Causs S., Bonan N.B. et al. Heat-shock proteins: chaperoning DNA repair // Oncogene. 2020. V. 39. P. 516–529. https://doi.org/10.1038/s41388-019-1016-y
- Tran P.L., Kim S.A., Choi H.S. et al. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo // BMC Cancer. 2010. V. 10. P. 276. https://doi.org/10. 1186/1471-2407-10-276
- Park S.H., Baek K.H., Shin I., Shin I. Subcellular Hsp70 inhibitors promote cancer cell death via different mechanisms // Cell. Chem. Biol. 2008. V. 25. P. 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010
- Du S., Liu Y., Yuan Y. et al. Advances in the study of HSP70 inhibitors to enhance the sensitivity of tumor cells to radiotherapy // Front. Cell Dev. Biol. 2002. V. 10. https://doi.org/10.3389/fcell.2022.942828
- Van Dyk T.K., Rosson R.A. Photorhabdus luminescens luxCDABE promoter probe vectors // Methods Mol Biol. 1998. V. 102. P. 85–95. https://doi.org/10.1385/0-89603-520-4:85
- Мелькина О.Е., Котова В.Ю., Манухов И.В., Завильгельский Г.Б. Влияние шаперонов IbpAB и Clpa на DnaKJE-зависимый рефолдинг бактериальных люцифераз в клетках Escherichia coli // Мол. биология. 2011. Т. 45. С. 524–528.
- Завильгельский Г.Б., Котова В.Ю., Манухов И.В. Сенсорные биолюминесцентные системы на основе lux-оперонов для детекции токсичных веществ // Хим. физика. 2012. Т. 31. № 10. С. 15–20.
- Collins J.A., Osheroff N. Gyrase and topoisomerase iv: Recycling old targets for new antibacterials to combat fluoroquinolone resistance // ACS Infect. Dis. 2024. V. 10. P. 1097−1115. https://doi.org/10.1021/acsinfecdis.4c00128
- Badawy S., Yang Y., Liu Y. et al. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism // Crit. Rev. Toxicol. 2021. V. 51. P. 754–787. https://doi.org/10.1080/10408444.2021.2024496
- Adams R.A., Leon G., Miller N.M. et al. Rifamycin antibiotics and the mechanisms of their failure // J. Antibiotic. 2021. V. 74. P. 786–798. https://doi.org/10.1038/s41429-021-00462-x
- Дурнев А.Д., Дубовская О.Ю., Нигарова Э.А. и др. Роль свободных радикалов кислорода в механизме мутагенного действия диоксидина // Хим.-фарм. журн. 1989. Т. 23. № 11. С. 1289–1294.
- Anirudha G., Khynriam D., Prasad S.B. Vitamin C mediated protection on cisplatin induced mutagenicity in mice // Mutat. Res. 1998. V. 42. P. 139–148. https://doi.org/10.1016/s0027-5107(98)00158-4
- Zhang N., Yin Y., Xu S.-J., Chen W.-S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies // Molecules. 2008. V. 3. № 8. P. 1551–1569. https://doi.org/10.3390/molecules13081551
- Munshi P.N., Lubin M., Bertino J.R. 6-Thioguanine: A drug with unrealized potential for cancer therapy // Oncologist. 2014. V. 13. P. 760–765. https://doi.org/0.1634/theoncologist.2014-0178
- Djordjevic B., Szybalski W. Genetics of human cell lines: III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity // Exp Med. 1960. V. 112. P. 509–531.
- Paz M.M., Zhang H., Lu J., Holmgren A. A new mechanism of action for the anticancer drug mitomycin c: mechanism-based inhibition of thioredoxin reductase // Chem. Res. Toxicol. 2012. V. 25. P. 1502–1511. https://doi.org/10.1021/tx3002065
- Lu D.-F., Wang Y.-S., Li C. et al. Actinomycin D inhibits cell proliferations and promotes apoptosis in osteosarcoma cells // Int. J. Clin. Exp. Med. 2015. V. 8. № 2. P. 1904–1911.
- Bailleul B., Daubersies P., Galiègue-Zouitina S., Loucheux-Lefebvre M.H. Molecular basis of 4-nitroquinoline 1-oxide carcinogenesis // Jpn. J. Cancer Res. 1989. V. 80. P. 691–697.
- Maron D.M., Ames B.N. Revised methods for Salmonella mutagenicity test // Mutat. Res. 1983. V. 113. P. 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
- Попов Д.А., Анучина Н.М., Терентьев А.А. и др. Диоксидин: антимикробная активность и перспективы клинического применения на современном этапе // Антибиотики и химиотерапия. 2013. № 3–4.
- Overbeck T.L., Knight J.M., Beck D.J. A comparison of the genotoxic effects of carboplatin and cisplatin in Escherichia coli // Mutat. Res. 1996. V. 362. P. 249–259. https://doi.org/10.1016/0921-8777(95)00056-9
- Verwei J., Pinedo H.M. Mitomycin C: mechanism of action, usefulness and limitations // Anticancer Drugs. 1990. V. 1. № 1. P. 5–13.
- Ros H.H., Caldeira M., Reynolds B.A. et al. Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo // Neoplasia. 2008. V. 10. P. 804–816. https://doi.org/10.1593/neo.08382
- Chang S., Lamm S.H. Human health effects of sodium azide exposure: A literature review and analysis // Int. J. Toxicol. 2003. V. 22. P. 175–186. https://doi.org/10.1080/10915810305109
- Nealson K.H., Platt T., Hastings J.W. Cellular control of the synthesis and activity of the bacterial luminescent system // J. Bacteriol. 1970. V. 104. P. 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970
- Daunert S., Barett G., Feliciano J.S. et al. Genetically engineered whole cell sensing systems: coupling biological recognition with reporter genes // Chem. Rev. 2000. V. 100. P. 2705–2738. https://doi.org/10.1021/cr990115p
- Fomin V.V., Bazhenov S.V., Kononchuk O.V., et al. Photorhabdus lux-operon heat shock-like regulation // Heliyon. 2023. V. 9. e14527. https://doi.org/10.1016/j.heliyon.2023.e14527
- Bazhenov S.V., Novoyatlova U.S., Scheglova E.S. et al. Bacterial lux-biosensors: constructing, applications, and prospects // Biosensors and Bioelectronics. 2023. V. 13. https://doi.org/10.1016/j.biosx.2023.100323
- Abilev S.K., Igonina E.V., Sviridova D.A., Smirnova S.V. Bacterial lux biosensors in genotoxicological studies // Biosensors. 2023. V. 13. № 511. https://doi.org/10.3390/bios13050511
- Zhu Y., Elcin E., Jiang M. et al. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems // Front. Chem. 2022. V. 10. https://doi.org/10.3389/fchem.2022.1018124.
- Kotova V.Y., Manukhov I.V., Zavilgelskii G.B. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress // Appl. Biochem. Microbiol. 2010. V. 46. P. 781–788.
- Дурнев А.Д., Жанатаев А.К., Еремина Н.И. Глава 1 // Генетическая токсикология. М.: Миттель-Пресс, 2022. C. 18–36.
- Chatterjee N., Walker G.C. Mechanisms of DNA damage, repair and mutagenesis // Environ Mol. Mutagen. 2017. V. 58. P. 235–263. https://doi.org/10.1002/em.22087
- Liebler D.C. Protein damage by reactive electrophiles: targets and consequences // Chem. Res. Toxicol. 2008. V. 21. P. 117–128. https://doi.org/10.1021/tx700235t
- LoPachin R.M., Gavin T. Reactions of electrophiles with nucleophilic thiolate sites: Relevance to pathophysiological mechanisms and remediation // Free Radic Res. 2016. V. 50. P. 195–205. https://doi.org/10.3109/10715762.2015.1094184
- Свиридова Д.А., Мачигов Э.А., Игонина Е.В. и др. Изучение механизма генотоксичности диоксидина с помощью lux-биосенсоров Esсherichia coli // Радиац. биология. Радиоэкология. 2020. Т. 60. № 6. С. 595–603. https://doi.org/10.31857/S0869803120060223
Arquivos suplementares

