_____ ЭКСПЕРИМЕНТАЛЬНЫЕ ____ СТАТЬИ

УДК 581.14.581.19.57.017.64

ЦИТОГЕНЕТИЧЕСКАЯ И БИОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА KAЛЛУCOB *Pinus svlvestris* L.

© 2023 г. Н. А. Галибина^{а, *}, М. А. Ершова^b, Р. В. Игнатенко^b, К. М. Никерова^a, И. Н. Софронова^a, М. Н. Бородина^a

^a Институт леса — обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра "Карельский научный центр Российской академии наук", Петрозаводск, Россия

^b Отдел комплексных научных исследований Федерального исследовательского центра "Карельский научный центр Российской академии наук", Петрозаводск, Россия

*e-mail: galibina@krc.karelia.ru
Поступила в редакцию 22.03.2022 г.
После доработки 19.07.2022 г.
Принята к публикации 22.07.2022 г.

Проведена комплексная оценка изменений, происходящих при потемнении каллуса, полученного из вегетативных почек 40-летних деревьев сосны обыкновенной *Pinus sylvestris* L. На основании биометрической оценки каллуса (интенсивность каллусообразования, доля светлого каллуса, масса каллуса) из 32 проанализированных деревьев (16 генотипов, представленных двумя клонами) выделили два генотипа с высокой каллусообразующей способностью. Анализ митоза показал, что хотя доля аберрантных клеток в каллусе не превышает нормы спонтанного мутирования для *P. sylvestris*, спектр нарушений на стадии мета-, ана- и телофазы в каллусной культуре был шире по сравнению с таковым у семенного потомства тех же деревьев сосны. Потемнение каллуса сопровождалось снижением метаболизации сахарозы в клетке (снижение цитоплазматической, вакуолярной инвертазы и сахарозосинтазы) и существенным снижением активности пероксидазы. При этом активность апопластной инвертазы поддерживалась на постоянном уровне. Активность супероксиддисмутазы, каталазы, полифенолоксидазы и фенилаланинаммиаклиазы, наоборот, была выше в темном каллусе. Обсуждается возможное использование изученных ферментов как биохимических маркеров перехода к потемнению каллусных культур сосны.

Ключевые слова: сосна обыкновенная, потемнение каллуса, нарушение митоза, инвертаза, сахарозосинтаза, супероксиддисмутаза, каталаза, пероксидаза, полифенолоксидаза, фенилаланинаммиаклиаза

DOI: 10.31857/S0015330322100244, EDN: AKUYJI

ВВЕДЕНИЕ

Потемнение клеток в процессе культивирования растительных объектов — одна из основных причин, препятствующая их дальнейшему росту и дифференцировке *in vitro* [1]. Потемнение сопровождается снижением пролиферации клеток и остановкой их дальнейшего развития [2, 3], что подтверждается возрастанием количества отмирающих клеток при увеличении интенсивности потемнения [4]. Особенно много проблем возникает с культивированием тканей и органов хвойных растений [1], в том числе у сосны обыкновен-

Сокращения: АОС — антиоксидантная система; АпИнв — апопластная инвертаза; ВакИнв — вакуолярная инвертаза; КАТ — каталаза; ЛСП І — лесосеменная плантация І порядка; ПО — пероксидаза; ПФО — полифенолоксидаза; СОД — супероксиддисмутаза; СС — сахарозосинтаза; ТГ — тетрагваякол; ФАЛ — фенилаланинаммиаклиаза; ЦитИнв — цитоплазматическая инвертаза.

ной (*Pinus sylvestris* L.) [1, 4, 5]. Представители рода *Pinus* играют важное экономическое значение. Несмотря на то, что для многих видов описан биотехнологический способ размножения путем соматического эмбриогенеза [6, 7], массовое тиражирование *P. sylvestris* в культуре *in vitro* до сих пор остается труднодостижимым, и одна из проблем — это быстрое потемнение каллуса [4, 5].

Для количественной характеристики стадии развития каллуса наряду с цитологической оценкой [8—10] применяют различные биометрические показатели. Биометрические показатели культуры *in vitro* являются важными индивидуальными параметрами при предварительном отборе деревьевдоноров для дальнейшего успешного культивирования. Считается, что их можно использовать для оценки репродуктивного потенциала растений [11]. К таким параметрам относят: частоту инициации (число эксплантов, образовавших каллус, к обще-

му числу эксплантов), скорость образования первичного каллуса, скорость роста каллуса, жизнеспособность каллусных тканей, начало потемнения, интенсивность потемнения и др. [11].

Потемнение клеток связано с накоплением фенольных соединений и хинонов [1], которые могут ингибировать активность некоторых ферментов, особенно оксидоредуктаз и гидролаз. На биохимическом уровне потемнение сопровождается изменением активности пероксидазы (ПО, КФ 1.11.1.7) и полифенолоксидазы (ПФО, КФ 1.14.18.1) [12]. Данные ферменты совместно участвуют в реакциях потемнения эксплантов, катализируя окисление полифенолов в хиноны и затем в танины, которые постепенно накапливаются и внешне выражаются появлением коричневой окраски [13]. В клетке работа ПО и ПФО неразрывно связана с другими ферментами антиоксидантной системы (АОС), такими как супероксиддисмутаза (СОД, **КФ** 1.15.1.1) и каталаза (**КАТ**, **КФ** 1.11.1.6). В ряде работ отмечают изменение активности СОД и КАТ как во время развития каллуса, так и при его потемнении [14]. Известно и об участии фенилаланинаммиаклиазы (ФАЛ, КФ 4.3.1.5) в процессах потемнения каллуса. Это фермент, переключающий метаболизм на синтез флавоноидов, относится к ферментам вторичного метаболизма. Он участвует в реакции образования из фенилаланина транс-коричной кислоты – предшественника большинства фенольных соединений [15].

Основным источником углеводов в культуре in vitro является сахароза, которая сама по себе метаболически инертна. Утилизация сахарозы в тканях происходит при участии ферментов ее гидролиза — инвертазы (Инв, КФ 3.2.1.26) и сахарозосинтазы (СС, КФ 2.4.1.13) [16]. Инвертаза расщепляет молекулу сахарозы на две гексозы глюкозу и фруктозу. Метаболизация сахарозы с участием СС, как правило, сопряжена с преобладанием в клетках активных синтетических процессов. Мембраносвязанная форма СС образует комплекс с целлюлозосинтазой [17], что дает возможность прямого использования образуемой в результате активности СС УДФ-глюкозы для биосинтеза целлюлозы. В ряде работ показано, что активность СС в пролиферирующем эмбриогенном каллусе остается на постоянном уровне [18, 19]. Изменение активности ферментов, метаболизируюших сахарозу, в основном изучают при развитии зиготических и соматических зародышей. Работ, исследующих их динамику при потемнении каллуса, нам не встречалось.

Цель работы — комплексный анализ каллуса *P. sylvestris* в процессе его потемнения, включающий оценку биометрических и цитогенетических показателей и определение активности ферментов, метаболизирующих сахарозу, ферментов АОС и фенольного метаболизма.

МАТЕРИАЛЫ И МЕТОДЫ

Отбор растительного материала и введение в культуру in vitro

Деревья-доноры P. sylvestris произрастали в подзоне средней тайги на Петрозаводской лесосеменной плантации I порядка (ЛСП I) (61.91972° с.ш.; 34.41389° в.д.). ЛСП (площадь 238 га) была основана в 1976 г. и расположена в 15 км от Петрозаводского городского округа, вдали от крупных автотранспортных магистралей, и окружена сосновыми и еловыми фитоценозами. Поле, на котором произрастают исследуемые деревья, закладывалось по рандомизированной схеме с расстоянием между деревьями 5 × 8 м, вегетативным потомством плюсовых деревьев, отобранных в популяциях P. sylvestris на территории Карелии. Возраст деревьев на плантации — 36-40 лет. На основании селекционно-генетической оценки, провеленной сотрудниками Института леса Карельского научного центра РАН под руководством д.с.-х.н. Б. В. Раевского, были отобраны 20 генотипов сосны обыкновенной (по пять клонов в каждом генотипе), которые произрастают в пределах одного поля плантации. Отобранные деревья были схожи по морфологическим параметрам и статистически не отличались между собой по высоте (15.1 \pm 2.1 м), диаметру на высоте 1.3 м (27 \pm 3.5 см), форме и протяженности ($66 \pm 11\%$) кроны.

В период вынужденного покоя (конец февраля – начало марта 2021 г.) с 32 деревьев сосны (16 генотипов по 2 клона в каждом) из верхней части кроны (на высоте 11-13 м) были собраны вегетативные почки. Почки с частью побега поверхностно обрабатывали 10% мыльным раствором в течение 10 мин с обильным промыванием под проточной водой. Далее в асептических условиях бокса микробиологической безопасности SAVVY ("LAM-SYSTEMS", Германия) растительный материал в течение 10 мин обрабатывали 5% раствором гипохлорита натрия (коммерческий отбеливатель "Белизна", Россия), трехкратно промывали стерильной дистиллированной водой, в течение 10 мин обрабатывали 20% раствором перекиси водорода, затем снова промывали стерильной дистиллированной водой три раза. Далее почки очищали от почечных чешуй, вырезали поперечные диски толщиной 1-2 мм и помещали срезом на среду. Экспланты культивировали на питательной среде МС в модификации А. Hohtola [20], в качестве регуляторов роста использовали 2,4-D и БАП в концентрациях 2 и 1 мг/л, соответственно, источником углеводов служила сахароза в концентрации 10 г/л (табл. 1). Величина выборки для каждого дерева составила 5-6 повторностей. В каждой колбе (одна повторность) культивировали по 4—5 эксплантов почек.

Na₂-Fe-EDTA

	*			
Макроэлементы, мг/л		Другие компоненты, мг/л		
NH ₄ NO ₃	825	Никотиновая кислота	0.75	
KNO ₃	950	Пиридоксин · HCl	0.75	
$CaCI_2 \cdot 2H_2O$	220	Тиамин · HCl	0.15 100	
$MgSO_4 \cdot 7H_2O$	370	Миоинозитол		
KH ₂ PO ₄	340	Глицин	3	
Микроэлементы, мг/л		L-глутамин	200	
KI	1.66	Сахароза	10000	
H_3BO_3	12.4	Агар	7000	
$MnSO_4 \cdot 4H_2O$	22.3	Гормоны, мг/л		
$ZnSO_4 \cdot 7H_2O$	8.6			
$Na_2MoO_4 \cdot 2H_2O$	0.5	2,4-D	2	
CuSO ₄ · 5H ₂ O	0.025	6-БАП	1	
$CoC1_2 \cdot 6H_2O$	0.05			

Таблица 1. Состав питательной среды МС по Hohtola [20] с модификациями

39

Определение биометрических показателей

При культивировании эксплантов фиксировали время начала каллусообразования, количество эксплантов, которые образовали каллус, а также время начала потемнения каллусной массы. Через 30 дней культивирования каллусную ткань в каждой повторности делили на светлую и темную части, давали им визуальную характеристику (цвет, консистенция) и взвешивали на аналитических весах Sartorius CP124S ("Sartorius AG", Германия). Для исследуемых генотипов рассчитывали следующие параметры: 1) частоту инициации каллусообразования (доля эксплантов, образовавших каллус, к общему числу эксплантов, %), 2) долю светлого каллуса (отношение массы светлого каллуса к общей массе каллуса на 1 повторность через 30 дней культивирования, %).

Цитологические и цитогенетические исследования

Для проведения цитологического анализа каллусную ткань различного цвета помещали на предметное стекло, выдерживали 1—2 мин в красителе (0.2% водный раствор сафранина с добавлением капли насыщенного спиртового раствора метиленового синего) [8]. Для цитогенетических исследований растительный материал фиксировали в спиртово-уксусной смеси (3:196% этиловый спирт: ледяная уксусная кислота) в течение 24 ч. Окрашивали каллус 1% ацетогематоксилином, перед окрашиванием материал выдерживали 5 мин в 4% растворе железоаммонийных квасцов [10, 21]. Давленые препараты готовили по стандартным методикам. Препараты просматривали под световым микроскопом Carl Zeiss Primo

Star ("Carl Zeiss", Германия) при увеличении 40×. Для микрофотосъемки использовали цифровую камеру-окуляр ADFstd 10 ("ADF", Китай). Для приготовления одного препарата отбирали по 5 мг каллуса. Проанализировано 6533 клетки на стадиях метафазы и ана-телофазы митоза и 27403 клетки на стадии интерфазы в каллусах, образованных из почек деревьев сосны.

Биохимические исследования

Культуру клеток, сформированную эксплантами, собранными с различных деревьев, разделяли на светлую и темную части и анализировали отдельно. Навеску каллуса растирали с жидким азотом и буфером для экстракции (50 мМ Нерез (рН 7.5), 1 мМ ЭДТА, 1 мМ ЭГТА, 3 мМ ДТТ, 5 MM MgCl₂, 0.5 MM PMSF) ("Sigma-Aldrich", Германия) в соотношении ткань : буфер 1 : 10. После 15 мин инкубации при 4°C гомогенат центрифугировали при 12000 об/мин в течение 10 мин (центрифуга MPW-351R, "MPW Med. Instruments", Польша). В осадке определяли активность апопластной инвертазы (АпИнв), в супернатанте – остальных ферментов. Супернатант очищали на п/э колонках объемом 20 см³, заполненных гелем Sephadex G-25 medium ("GE HealthCare", США). Содержание белка определяли по методу Бредфорда. Ферментативную активность определяли спектрофотометрически на планшетном ридере SpectroStarNano ("BMG Labtech", Германия).

Активность СОД определяли по уменьшению оптической плотности ($\lambda = 560$ нм) после 30 мин инкубации под светом флуоресцентных ламп.

Среда инкубации состояла из 67 мМ К, Na-фосфатного буфера (рН 7.8), 0.1% тритона X-100, 50 мМ ЭДТА, 172 мкМ нитросинего тетразолия ("AppliChem", Германия), 210 мкМ метионина-L, 24 мкМ рибофлавина ("Sigma-Aldrich", Германия). Активность СОД выражали в усл. ед. на 1 мг белка за 30 мин (усл. ед./мг белка) [22].

Активность КАТ определяли по уменьшению оптической плотности ($\lambda=240$ нм), которая свидетельствует об убывании перекиси водорода. Содержание перекиси водорода рассчитывали по предварительно построенному градуировочному графику. Среда инкубации состояла из 67 мМ К,Na-фосфатного буфера (рН 7.8) и 14.7 мМ перекиси водорода. Активность КАТ выражали в мкмоль израсходованной перекиси водорода на мг белка за 4 мин (мкмоль $H_2O_2/$ мг белка) [22].

Активность ПО определяли по увеличению оптической плотности ($\lambda = 470$ нм) за счет образования продукта реакции — тетрагваякола (ТГ). Количество ТГ рассчитывали с учетом коэффициента экстинкции ($\epsilon = 0.0266$ мкМ⁻¹ см⁻¹). Реакцию наблюдали во времени в течение 60 мин. Зависимость скорости реакции от времени имела линейный характер. Среда инкубации состояла из 67 мМ К,Nа-фосфатного буфера (рН 5.0), 2.6 мМ перекиси водорода и 21.5 мМ гваякола ("Sigma-Aldrich", Германия). Активность ПО выражали в мкмоль образовавшегося ТГ на мг белка за 30 мин (мкмоль ТГ/мг белка) [22].

Активность ПФО определяли по возрастанию оптической плотности в той части спектра, где поглощают продукты окисления пирокатехина ($\lambda = 420$ нм). Реакцию наблюдали в течение 30 мин. Зависимость скорости реакции от времени имела линейный характер. Среда инкубации для определения активности ПФО состояла из 67 мМ K,Na-фосфатного буфера (рН 7.2) и 16.4 мМ пирокатехина ("Sigma-Aldrich", Германия). Активность ПФО выражали в усл. ед. на 1 мг белка за 1 мин (усл. ед./мг белка) [22].

Активность ФАЛ определяли по увеличению оптической плотности ($\lambda=270$ нм), которая связана с образованием продукта реакции — транскоричной кислоты после 60 мин инкубации при 37°С. Содержание транс-коричной кислоты рассчитывали по предварительно построенному градуировочному графику. Инкубационная среда состояла из 60 мМ Na-боратного буфера (рН 8.6), 201.8 мМ L-фенилаланина (о.с.ч. "Вектон", Россия). Активность ФАЛ выражали в мкмоль коричной кислоты на 1 мг белка за 60 мин (мкмоль коричной кислоты/мг белка).

Активность кислых инвертаз (АпИнв и ВакИнв) определяли по количеству образовавшейся глюкозы после инкубации при 30°С в течение 30 мин. Инкубационная среда содержала 50 мМ ацетатный буфер (рН 4.7) и 50 мМ сахарозу. Образовав-

шуюся в процессе инкубации глюкозу определяли глюкозооксидазным методом, количество ее рассчитывали по предварительно построенному градуировочному графику. Активность цитоплазматической инвертазы (ЦитИнв) и СС определяли по количеству образовавшейся фруктозы, как описано в работе Nguyen с соавт. [23]. Инкубационная среда для определения активности ЦитИнв содержала 50 мМ Нерез (рН 7.5) и 100 мМ сахарозу; CC – 50 мМ Hepes (pH 7.5), 100 мМ сахарозу и 1 мМ уридиндифосфат. Инкубация при 37°C в течение 60 мин. Образовавшуюся в процессе инкубации фруктозу определяли в реакции с 2,3,5трифенилтетразолием хлористым по увеличению оптической плотности при $\lambda = 495$ нм, количество ее рассчитывали по предварительно построенному градуировочному графику. Активность СС и Инв выражали в мкмоль метаболизированной сахарозы на 1 мг белка за 30 мин (мкмоль/мг белка).

Статистическая обработка данных

Статистическая обработка данных осуществлялась в среде Microsoft Excel и PAST. На диаграммах приведены средние значения с учетом указанной биологической (n) и двукратной аналитической повторностей и их стандартные ошибки. Выборки проверялись на нормальность с использованием критерия Шапиро-Уилка. Для оценки достоверности различий применяли критерий Манна-Уитни (обозначены на графиках латинскими буквами). Для разделения деревьев-доноров на группы по биометрическим показателям (1) и активности изучаемых ферментов (2) использовали кластерный анализ. Для изучения взаимосвязи биометрических параметров внутри выделенных групп между собой и активности ферментов между собой применяли корреляционный анализ. Статистически значимыми считали различия при P < 0.05.

Исследования выполнены на научном оборудовании Центра коллективного пользования Федерального исследовательского центра "Карельский научный центр Российской академии наук".

РЕЗУЛЬТАТЫ

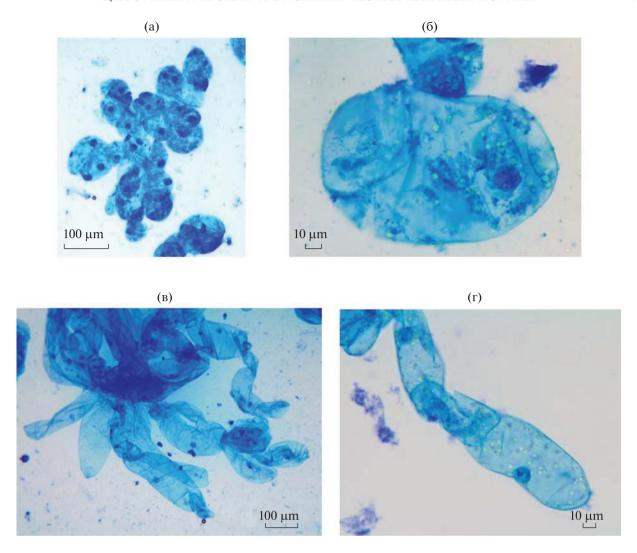
Характеристика каллусообразования у разных генотипов сосны

Каллус начинал формироваться на 5-11 сутки культивирования. В среднем, 60% эксплантов, введенных в культуру, образовывали каллус. Потемнение каллуса отмечалось примерно через 15 дней культивирования. На 1 эксплант в среднем приходилось 104 ± 48 мг каллуса, доля (по массе) светлого каллуса сильно варьировала: от 0 до 100%. Мы обнаружили, что частота и продолжительность инициации каллусообразования, а

Таблица 2. Биометрические показатели каллусных культур					

Генотип	Число эксплантов	Частота инициации, %	Масса каллуса, г	Масса каллуса, г (max-min значение)	Доля светлого каллуса, % (тах-тіп значение)
1025	40	80.0 ± 10.0	0.49 ± 0.11	1.13-0.08	100-32
1026	45	71.0 ± 1.0	0.67 ± 0.08	1.19-0.33	100-25
864	40	62.5 ± 17.5	0.82 ± 0.14	1.45-0.16	100-0
853	44	80.8 ± 14.2	0.37 ± 0.04	0.62-0.24	61-0
876	39	66.8 ± 6.8	0.29 ± 0.05	0.47-0.12	49-0
371	39	43.3 ± 11.7	0.24 ± 0.09	0.39-0.07	40-0
1231	40	60.0 ± 20.0	0.56 ± 0.03	0.62-0.48	40–6
829	40	32.5 ± 7.5	0.46 ± 0.10	0.90-0.32	53-18
856	40	55.0 ± 25.0	0.50 ± 0.08	0.70-0.21	38-0
114	40	26.3 ± 5.3	0.27 ± 0.06	0.63-0.15	43-0
516	40	90.0 ± 10.0	0.47 ± 0.06	0.74-0.25	42-0
962	40	95.0 ± 5.0	0.31 ± 0.03	0.51-0.21	38-0
1042	40	42.5 ± 7.5	0.54 ± 0.09	0.76-0.14	36-0
158	40	75.0 ± 5.0	0.19 ± 0.06	0.39-0.02	0
835	40	57.5 ± 42.5	0.47 ± 0.03	0.54-0.36	0
107	39	20.5 ± 0.5	0.11 ± 0.02	0.18-0.07	0

также потемнение массы клеток зависели от дерева-донора растительного материала (табл. 2). Массив данных, включающий в себя частоту инициации, долю светлого каллуса и среднее значение массы каллуса на одну повторность, с помощью кластерного анализа разделили на две группы. В первую группу вошли генотипы с высокой долей светлого каллуса ($43 \pm 6\%$), во вторую группу – генотипы, у которых доля светлого каллуса была значительно ниже (7.8 \pm 2%). Частота инициации мало отличалась между группами и составляла $53 \pm 6\%$ и $62 \pm 8\%$, соответственно. Напротив, средняя масса каллуса на 1 повторность достоверно отличалась у первой и второй групп $(0.47 \pm 0.06 \text{ и } 0.31 \pm 0.1 \text{ г, соответственно})$. В первой группе – светлом каллусе – частота инициации коррелировала с долей светлого каллуса и средней массой (r = 0.66; P = 0.006 и r = 0.54; P = 0.03, соответственно), во второй группе корреляций не обнаружено.

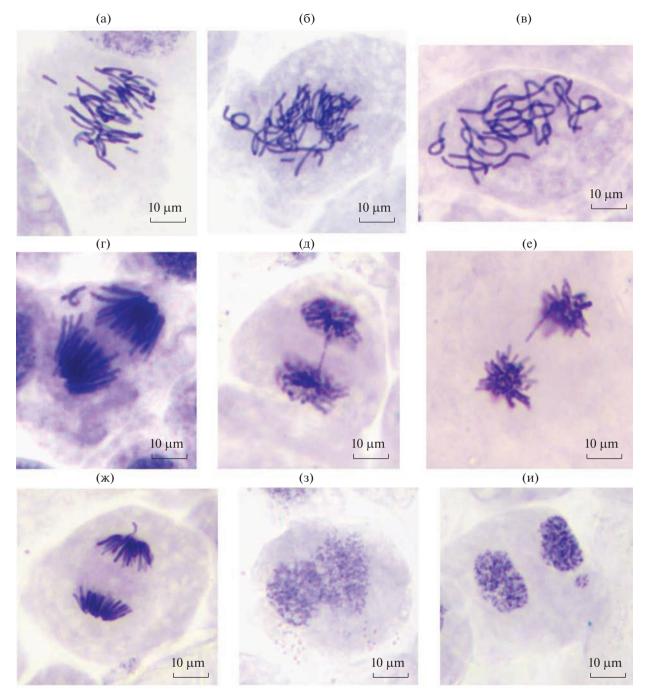

Цитологический и цитогенетический анализ культуры клеток

Цитологическое исследование культуры клеток *P. sylvestris* показало, что в светлом и светлокоричневом каллусе имелось два типа клеток округлые, меристематического типа (рис. 1а, б) и вытянутые, паренхимного типа (рис. 1в, д), в которых отчетливо просматривалось ядро.

В результате цитогенетического анализа (через 30 дней культивирования) выявлено, что среднее число пролиферирующих клеток на стадиях метафазы и ана-телофазы было значимо выше в светлом каллусе по сравнению с темным и составляло 66.5 ± 11.1 и 15.0 ± 5.8 шт. на препарат (P < 0.0005), соответственно. Исследование митоза в культуре *in vitro* показало, что частота аберрантных клеток не превышала 4.2% и в среднем была равна $2.6 \pm 0.3\%$. На стадии метафазы нарушения наблюдали редко (14% от общего числа аберрантных клеток). Спектр патологий на данной стадии митоза состоял из забегания хромосом (отдельные хромосомы опережают остальные при движении к полюсу), фрагментации и обособления хромосом, К-митоза (остановка деления клетки) и сложных (несколько типов патологий встречаются одновременно) нарушений (рис. 2). В ана-телофозе наиболее часто встречали забегание хромосом (76%) и мосты (11%) (рис. 3). Также в клетках изредка наблюдали прямое деление ядра – амитоз (рис. 2). В рамках исследования в интерфазных клетках регистрировали микроядра, которые в большинстве случаев имели небольшой размер и округлую форму. В среднем, доля клеток с микроядрами составляла $0.1 \pm 0.03\%$ от общего числа изученных клеток на данной стадии. Важно отметить, что микроядра были зафиксированы также на стадии телофазы митоза (рис. 2).

Изменение активности ферментов при потемнении каллуса

Ряд исследователей, изучая процессы потемнения в культуре клеток in vitro у растений, разделяют каллусы по морфологическим признакам на группы. Считается, что особенности метаболиче-


Рис. 1. Развитие соматических клеток *Pinus sylvestris* в культуре *in vitro*: a, b — округлые клетки светлого каллуса; b, b — вытянутые клетки светлого каллуса.

ских процессов в каллусе внешне могут проявляться в его цвете: белый, оттенки желтого, зеленого, светло-коричневого и в конечном итоге — полностью коричневый [24]. Часто каллусы разного цвета могут отличаться и структурой: рыхлые и хрупкие, плотные с компактной структурой [25]. На основании активности ферментов, с использованием кластерного анализа, каллусы разделили на четыре группы. Оказалось, что в первую группу попали светлые каллусы (рис. 4а), в четвертую — наиболее темные каллусы (рис. 4г), а вторая и третья группы были промежуточными по степени потемнения между первой и четвертой (рис. 4б, в).

У каллусов из разных групп не обнаружено достоверных отличий в активности АпИнв — в среднем ее значение составило 10.5 мкмоль сахарозы/мг белка (рис. 5а). Активность растворимой формы кислой инвертазы ВакИнв снижалась в 1.5—1.7 раз при потемнении каллуса. Достовер-

ные отличия обнаружены между первой и третьей группами каллусов (рис. 5б). В светлом каллусе наблюдали также более высокую активность цитоплазматических ферментов, метаболизирующих сахарозу. Активность ЦитИнв в светлом каллусе превосходила таковую в темном в 1.8 раз (рис. 5в). Активность СС у групп варьировала от 0.1 до 0.3 мкмоль сахарозы/мг белка. При этом активность СС в первой и второй группах была значимо выше, чем в третьей (в 2.2 и 2.3 раза, соответственно) и четвертой (в 4.1 и 4.2 раза, соответственно) группах (рис. 5г).

При потемнении каллусов активность СОД повышалась. Самая высокая активность СОД наблюдалась в четвертой группе (2.1 усл. ед./мг белка), а самая низкая — в первой и во второй (1.2 усл. ед./мг белка) (рис. 6а). В самом темном каллусе четвертой группы наблюдали и самую высокую активность КАТ (196 мкмоль H_2O_2 /мг белка). В светлом

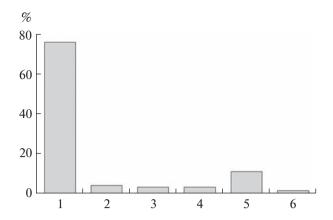
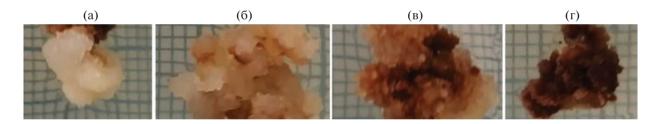


Рис. 2. Патологии митоза в клетках каллуса *Pinus sylvestris*: а — фрагментация в метафазе; б — сложное нарушение в метафазе (кольцевая хромосома, обособление и фрагментация хромосом); в — K-митоз в метафазе; r — обособление хромосомы в анафазе; g — мост в телофазе; g — отставание в анафазе; g — забегание в анафазе; g — амитоз; g — микроядро в телофазе.

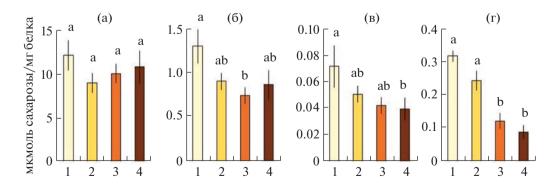
каллусе (первая группа) и каллусе, занимающем промежуточное положение (вторая и третья группы), активность КАТ была меньше в 2.2, 2.9 и 4 раза, соответственно (рис. 6б). Активность ПО снизилась в 2.3 раза в каллусе, проявляющем первые признаки потемнения (вторая группа) по сравнению со светлым каллусом (первая группа). Именно в первой группе ее значения были макси-

мальными (297 мкмоль ТГ/мг белка). При дальнейшем потемнении каллуса (третья и четвертая группы) активность ПО существенно снижалась по сравнению с первой группой — в 7.8 и в 4.6 раз, соответственно (рис. 6в).

Активность $\Pi\Phi O$ несколько снижалась на начальных стадиях потемнения каллуса, затем возрастала, достигнув своего максимума в третьей


Рис. 3. Спектр нарушений на стадиях ана-телофазы митоза в культуре клеток *Pinus sylvestris*: 1 — забегание; 2 — фрагментация; 3 — обособление; 4 — отставание; 5 — мосты; 6 — многополюсность.

группе — 78 усл. ед./мг белка. Между третьей и четвертой группой значимых отличий обнаружено не было (рис. 7а). Активность ФАЛ, аналогично активности ПФО, также возрастала от первой к третьей группе каллусов, достигнув в третьей группе своего максимума — 85 мкмоль коричной кислоты/мг белка. Между третьей и четвертой группой значимых отличий обнаружено не было (рис. 7б).


Из полученных данных видно, что изучаемые ферменты работают комплексно. Сильная положительная корреляция обнаружена между активностью Φ АЛ – Π ФО (r = 0.84, P = 2 × 10⁻¹⁶). Между активностью C – C — C

ОБСУЖДЕНИЕ

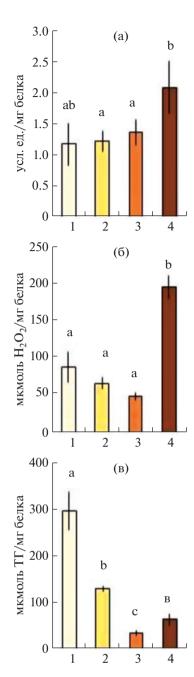

Проведенная нами биометрическая оценка каллуса *P. sylvestris* по ряду показателей позволила выделить деревья-доноры с высокой каллусообразующей способностью. Несмотря на широкий диапазон значений частоты инициации образования каллуса (15–100%), экспланты от всех исследуемых деревьев были способны к каллусообразованию. Масса образованного каллуса — важный показатель, указывающий на активность ростовых процессов. Не менее важным параметром является доля светлого каллуса. Высокие значения

Рис. 4. Внешний вид каллусов первой, второй, третьей и четвертой групп, выделенных в соответствии с проведенным кластерным анализом.

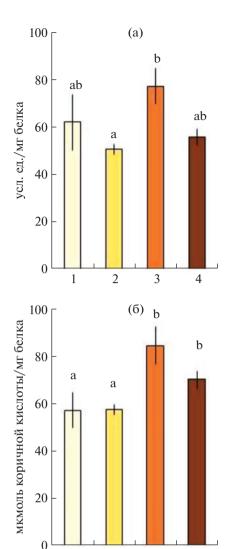


Рис. 5. Активность апопластной (а), вакуолярной (б), цитоплазматической (с) инвертазы и сахарозосинтазы (д) в каллусе *Pinus sylvestris* после 30 сут. культивирования. Цифрами 1-4 по оси абсцисе обозначены группы каллусов: для первой группы n=20, для второй n=4, для третьей n=25, для четвертой n=9. Представлены средние значения и их стандартные ошибки, обозначенные барами; латинские буквы указывают на значимые отличия.

Рис. 6. Активность супероксиддисмутазы (а), каталазы (б) и пероксидазы (в) в каллусе *Pinus sylvestris* после 30 сут. культивирования. Цифрами 1-4 по оси абсцисс обозначены группы каллусов: для первой группы n=20, для второй n=4, для третьей n=25, для четвертой n=9. Представлены средние значения и их стандартные ошибки, обозначенные барами; латинские буквы указывают на значимые отличия.

этих показателей указывают на генотипы, которые, вероятно, способны к длительному культивированию. Возможность использования каллусообразующей способности в качестве характеристики генотипа была продемонстрирована для *Pinus sibirica*, где в качестве эксплантов использовали почки и хвою [11]. Среди 32 проанализиро-

Рис. 7. Активность полифенолоксидазы (а) и фенилаланинаммиаклиазы (б) в каллусе *Pinus sylvestris* после 30 сут. культивирования. Цифрами 1-4 по оси абсцисс обозначены группы каллусов: для первой группы n=20, для второй -n=4, для третьей -n=25, для четвертой -n=9. Представлены средние значения и их стандартные ошибки, обозначенные барами; латинские буквы указывают на значимые отличия.

2

3

4

ванных деревьев (16 генотипов, представленных двумя клонами), мы можем выделить два генотипа (1025 и 1026), которые отличаются от остальных деревьев по совокупности проанализированных параметров и, вероятно, обладают высоким репродуктивным потенциалом. В дальнейшем мы предполагаем использовать эти генотипы при получении соматических зародышей в культуре *in vitro*.

Анализ митоза в каллусе показал, что доля аберрантных клеток не превышает нормы спонтанного мутирования для *P. sylvestris* — 5% [26]. При сравнении полученных данных с результатами цитогенетической оценки семенного потомства деревьев *P. sylvestris* с Петрозаводской ЛСП I

порядка [27] установлено, что частота патологий митоза была незначительно выше в культуре *in vitro*. Однако в клетках каллуса спектр нарушений на стадии метафазы был шире, а в ана-телофазе митоза доля клеток с мостами увеличилась в два раза, что может свидетельствовать об адаптации клеток к воздействию стрессовых условий in vitro за счет увеличения репарационных способностей [26]. Похожие закономерности описаны в ряде работ при изучении цитогенетических параметров в корневой меристеме семенного потомства *P. syl*vestris [21, 26]. Наличие прямого деления ядра может также указывать на стрессовое воздействие искусственных условий (высокие концентрации в питательной среде фитогормонов, макро- и микроэлементов, наличие антибиотиков и т.д.) на популяцию клеток. Цитогенетическое исследование длительно пролиферирующих эмбриогенных клеточных линий Larix sibirica показало существенное превышение уровня естественного мутагенеза, при этом патологии, связанные с повреждением хромосом (мосты, фрагментация, агглютинация), наблюдались редко [10].

Маркером начала соматического эмбриогенеза у хвойных растений является растяжение соматических клеток в длину [9]. Далее вытянутые клетки подвергаются асимметричному делению. что сходно с зиготическим эмбриогенезом у растений [8]. В результате цитологического исследования культуры клеток *in vitro*, полученных из вегетативных почек P. sylvestris, было установлено, что на 30 сутки культивирования каллус состоял как из изодиаметрических клеток, так и потенциально эмбриогенных длинных вакуолизированных клеток. Стоит отметить, что наличие таких клеток не всегда обеспечивает развитие эмбриогенного каллуса. Так, например, в результате цитологической оценки каллуса, полученного из соматических зародышей *P. sibirica*, было установлено, что образовавшиеся в культуре *in vitro* к концу инициации длинные клетки не изменялись [8]. При дальнейшем культивировании такие каллусы оставались неэмбриогенными и постепенно отмирали. Эмбриогенный каллус от неэмбриогенного можно отличить на основе морфологии и цвета [7]. Так, оцененные визуально как беловатые, полупрозрачные и мягкие каллусы P. sylvestris по данным цитологического анализа, в большинстве случаев, являлись неэмбриогенными [9]. Мы выявили каллусы (генотип 1025), которые на протяжении всего эксперимента оставались светлыми и состояли из различных типов клеток, что может указывать на их способность к дальнейшему развитию.

После 30 дней культивирования в каллусной ткани, предварительно разделив ее на светлую и темную части, определяли активность ферментов. Разделение каллусной ткани с использованием кластерного анализа на группы на основании

активности ферментов привело к тому, что каллусы с одного генотипа и/или с одного клона, и/или даже с одного экспланта, оказались в разных группах: в первой – только белая, в четвертой – только темная, во второй и третьей группах встречалась каллусная ткань разного цвета. Потемнение каллуса сопровождалось снижением утилизации сахарозы в цитоплазме с участием ЦитИнв и СС, что свидетельствует о снижении синтетических процессов. Следует отметить, что для цитоплазматических ферментов обнаружена положительная корреляция в изменении их активности в процессе потемненения каллуса. Активность АпИнв поддерживалась на постоянном уровне, поставляя продукты – глюкозу и фруктозу – для дальнейших превращений. Гексозы, образующиеся при метаболизации сахарозы АпИнв, вовлекаются в гликолиз, пентозофосфатный путь, цикл Кребса, что приводит к образованию АФК и синтезу веществ фенольной природы [28-30]. Считается, что НАДН-дегидрогеназы в митохондриях и НАДФН-оксидазы плазматической мембраны являются основными источниками супероксид анион-радикала в растительной клетке [31]. СОД запускает реакцию нейтрализации супероксидного радикала с образованием перекиси водорода. Известно, что контролируемые количества перекиси водорода необходимы для поддержания последующих делений клеток и нормального состояния клеточных стенок [32]. Поддержание баланса между супероксидными радикалами и перекисью водорода происходит за счет согласованной работы СОД, КАТ и ПО [30, 33, 34]. Мы обнаружили, что потемнение каллуса сопровождалось существенным снижением активности ПО; более того, это единственный из изученных ферментов, активность которого достоверно отличалась у четырех групп каллусов. Баланс между клеточной пролиферацией и дифференцировкой - ключевой аспект развития многоклеточного организма. На примере апикальных меристем корня Arabidopsis выявлен фактор транскрипции UPBEAT1 (UPB1), который, регулируя экспрессию изоформ ПО, поддерживает баланс супероксидный радикал/перекись водорода между зонами пролиферации и дифференциации клеток [35]. На основании данных литературы и наших исследований, изменение активности ПО, вероятно, можно рассматривать как маркер снижения пролиферации каллусной ткани и начальных этапов ее потемнения. Однако данное предположение нуждается в экспериментальных подтверждениях. Возрастание активности КАТ происходило только в четвертой группе каллуса, что может быть связано с существенным возрастанием перекиси водорода в самом темном каллусе. Известно, что для КАТ, в отличие от ПО, характерно низкое сродство к перекиси водорода, и ее активность усиливается при существенном возрастании последней [36].

Между СОД и КАТ выявлена положительная корреляция, активность СОД также увеличивалась только в самом темном каллусе.

Обнаружено, что при потемнении каллуса возрастает активность ФАЛ – ключевого фермента фенилпропаноидного пути. Известно, что активность ФАЛ в каллусной ткани может зависеть от присутствия углеводов, что показано на древесных растениях [37]. В четвертой группе каллуса, несмотря на снижение активности цитоплазматических ферментов, метаболизация сахарозы в апопласте не отличалась от таковой у каллуса первой-третьей групп и, вероятно, могла в достаточном количестве обеспечивать субстратами шикиматный путь. ФАЛ, в свою очередь, образуя из фенилаланина транс-коричную кислоту предшественницу большинства фенольных соединений [15], поставляет субстраты для реакций ПО и ПФО. Но если для ПО основным субстратом является перекись водорода, а фенольные соединения — доноры водорода для реакции [38], то для ПФО – сами фенольные соединения. ПФО катализирует реакцию окисления фенолов в присутствии кислорода до хинонов, ее высокая активность вызывает быстрое потемнение тканей [1].

Отметим, что наибольшее возрастание активности ФАЛ, ПФО и одновременное снижение активности ПО происходило от первой к третьей группе каллусов. Между третьей и четвертой группами статистически значимых изменений в активности данных ферментов не наблюдали. Известно, что в различных растительных тканях активность ФАЛ (катализирующей реакцию образования транс-коричной кислоты - предшественницы субстратов фенольной природы для ПО и ПФО) может возрастать до некоторого пикового уровня в зависимости от времени и физиологического состояния ткани [39]. Можно предположить, что в четвертой группе (темная каллусная ткань) преобладают процессы дегенерации тканей [2, 3, 40]: клетки отмирают, а степень потемнения возрастает [4]. С этим согласуются и полученные нами данные цитологического анализа – присутствие в темном каллусе в основном удлиненных клеток, в которых отсутствовало ядро.

Обобщая, отметим главное: выполнено комплексное исследование по биометрическим, цитогенетическим и биохимическим показателям каллусных культур *P. sylvestris* в процессе их потемнения. Показано, что активность ферментов АОС и углеводного обмена может служить биохимическими маркерами перехода к стадии потемнения каллусных культур. Вопрос поиска различных индикаторов смены стадий развития актуален, особенно при работе с клеточными культурами сосны. Дальнейшие исследования в этом направлении могут включать как поиск "успешных" генотипов, каллусные культуры которых длительно

пролиферируют и не темнеют, так и попытки регулирования активности изученных ферментов добавлением в питательную среду субстратов/низкомолекулярных антиоксидантов и т.д., предотвращая, тем самым, потемнение каллуса.

Авторы выражают благодарность сотрудникам лаборатории биотехнологии растений Отдела комплексных научных исследований Карельского научного центра Российской академии наук, а также лично д.с.-х.н., заведующему лабораторией лесных биотехнологий Института леса Карельского научного центра Российской академии наук Б. В. Раевскому за помощь в сборе полевого материала.

Работа выполнена за счет средств федерального бюджета по государственному заданию Карельского научного центра Российской академии наук (Институт леса Карельского научного центра Российской академии наук и Отдел комплексных научных исследований Карельского научного центра Российской академии наук).

Авторы заявляют об отсутствии конфликта интересов. Настоящая статья не содержит какихлибо исследований с участием людей и животных в качестве объектов исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tang W., Newton R.J.* Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (*Pinus virginiana* Mill.) // Plant Sci. 2004. V. 167. P. 621. https://doi.org/10.1016/j.plantsci.2004.05.024
- Chugh S., Guha S., Rao I.U. Micropropagation of orchids: a review on the potential of different explants // Sci. Hortic. 2009. V. 122. P. 507. https://doi.org/10.1016/j.scienta.2009.07.016
- 3. *Mondal T., Aditya S., Banerjee N*. In vitro axillary shoot regeneration and direct protocorm-like body induction from a shoot tips of *Doritis pulcherrima* Lindl. // Plant tissue culture and biotechnology. 2013. V. 23. №. 2. P. 251. https://doi.org/10.3329/ptcb.v23i2.17526
- Laukkanen H., Häggman H., Kontunen-Soppela S., Hohtola A. Tissue browning of in vitro cultures of Scots pine: role of peroxidase and polyphenol oxidase // Physiol. Plant. 1999. V. 106. P. 337. https://doi.org/10.1034/j.1399-3054.1999.106312.x
- Laukkanen H., Rautiainen L., Taulavuori E., Hohtola A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds // Tree Physiol. 2000. V. 20. P 467. https://doi.org/10.1093/treephys/20.7.467
- Keinonen-Mettälä K., Jalonen P., Eurola P., Arnold S., Weissenberg K. Somatic embryogenesis of Pinus sylvestris // Scand. J. For. Res. 1996. V. 11. C. 242. https://doi.org/10.1080/02827589609382933
- 7. *Шуклина А.С., Третьякова И.Н.* Соматический эмбриогенез видов рода *Pinus* в культуре in vitro //

- Успехи современной биологии 2019. Т. 139. С. 184. https://doi.org/10.1134/S004213241902008X
- 8. *Tret'yakova I.N., Voroshilova E.V., Shuvaev D.N.* Callusogenesis and somatic embryogenesis induction in hybrid embryos from the seeds of *Pinus sibirica //* Russ. J. Plant Physiol. 2014. V. 61. P. 274. https://doi.org/10.1134/S1021443714020162
- 9. Trontin J.-F., Aronen T., Hargreaves C., Montalbán I.A., Moncaleán P., Reeves C., Quoniou S., Lelu-Walter M.-A., Klimaszewska K. International effort to induce somatic embryogenesis in adult pine trees // Vegetative Propagation of Forest Trees, National Institute of Forest Science Institute (NIFoS), 2016. hal-02800018f
- 10. *Горячкина О.В., Пак М.Э., Третьякова И.Н.* Цитогенетические особенности эмбриогенных клеточных линий *Larix sibirica* Ledeb. в культуре *in vitro* // Вестик Томского гос. ун-та. Биология. 2017. № 39.
 - https://doi.org/10.17223/19988591/39/9
- Шмаков В.Н., Константинов Ю.М. Использование культуры клеток in vitro для изучения генетического разнообразия у Pinus sibirica Du Tour в условиях лесосеменной плантации // Сибирский экологический журнал. 2004. Т. 11. № 2. С. 149.
- Duan Y., Su Y., Chao E., Zhang G., Zhao F., Xue T., Sheng J.W., Teng J., Xue J. Callus-mediated plant regeneration in Isodon amethystoides using young seedling leaves as starting materials // Plant Cell, Tissue Organ Cult. 2019. V. 136. P. 247. https://doi.org/10.1007/s11240-018-1510-x
- 13. *Gauillard F., Richard-Forget F.* Polyphenoloxidases from Williams Pear (*Pyrus communis* L, cv Williams): activation, purification and some properties // J. Sci. Food Agric. 1997. V. 74. P. 49. https://doi.org/10.1002/(SICI)1097-0010(199705)74:1< 49::AID-JSFA769>3.0.CO;2-K
- 14. Yingsanga P., Srilaong V., Kanlayanarat S., Noichinda S., McGlasson W. Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and See-Chompoo // Postharvest Biol. Technol. 2008. V. 50. P. 164.
 - https://doi.org/10.1016/j.postharvbio.2008.05.004
- Dixon R.A., Lamb C.J., Masoud S., Sewalt V.J., Paiva N.L. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review // Gene. 1996. V. 179. P. 61. https://doi.org/10.1016/S0378-1119(96)00327-7
- 16. *Koch K.* Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development // Curr. Opin. Plant Biol. 2004. V. 7. P. 235. https://doi.org/10.1016/j.pbi.2004.03.01
- 17. Ruan Y.L., Llewellyn D.J., Furbank R.T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development // Plant Cell. 2003. V. 15. P. 952. https://doi.org/10.1105/tpc.010108
- 18. *Iraqi D., Tremblay F.M.* Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo devel-

- opment // J. Exp. Bot. 2001. V. 52. P. 2301. https://doi.org/10.1093/jexbot/52.365.2301
- 19. Gutierrez-Miceli F.A., Rodriguez-Mendiola M., Ochoa-Alejo N., Mendez-Salas R., Arias-Castro C., Dendooven L. Sucrose accumulation and enzyme activities in callus culture of sugarcane // Biol. Plant. 2005. V. 49. P. 475. https://doi.org/10.1007/s10535-005-0034-5
- 20. *Hohtola A*. Seasonal changes in explant viability and contamination of tissue cultures from mature Scots pine // Plant Cell, Tissue Organ Cult. 1988. V. 15. C. 211. https://doi.org/10.1007/BF00033645
- 21. Машкина О.С., Калаев В.Н., Мурая Л.С., Леликова Е.С. Цитогенетические реакции семенного потомства сосны обыкновенной на комбинированное антропогенное загрязнение в районе Новолипецкого металлургического комбината // Экол. генетика. 2009. Т. 7. С. 17. https://doi.org/10.17816/ecogen7317-29
- 22. Nikerova K.M., Galibina N.A., Moshchenskaya Y.L., Tarelkina T.V., Borodina M.N., Sofronova I.N., Semenova L.I., Ivanova D.S., Novitskaya L.L. Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch // Trees. 2022. V. 36. P. 517.
 - https://doi.org/10.1007/s00468-021-02225-5
- 23. *Nguyen Q.A.*, *Luan S.*, *Wi S.G.*, *Bae H.*, *Lee D.-S.*, *Bae H.-J.* Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway // Front. Plant Sci. 2016. V. 6. P. 1. https://doi.org/10.3389/fpls.2015.01216
- 24. *Ghorbanpour M., Hadian J.* Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant *Satureja khuzestanica* grown in vitro // Carbon. 2015. V. 94. P. 749.
 - https://doi.org/10.1016/j.carbon.2015.07.056
- He Y., Guo X., Lu R., Niu B., Pasapula V., Hou P., Cai F., Xu Y., Chen F. Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls // Plant Cell, Tissue Organ Cult. 2009. V. 98. P. 11. https://doi.org/10.1007/s11240-009-9533-y
- Butorina A.K., Kalaev V.N., Mironov A.E. A., Smorodinova V.A., Mazurova I.E., Doroshev S.A., Sen'kevich E.V. Cytogenetic variation in populations of Scotch pine // Russ. J. Ecol. 2001. V. 32. P. 198. https://doi.org/10.1023/A:1011366328809
- 27. Игнатенко Р.В., Ершова М.А., Галибина Н.А., Раевский Б.В. Цитогенетическая характеристика семенного потомства клонов плюсовых деревьев сосны обыкновенной в Карелии // Лесной журнал. 2022. № 1. С. 9. https://doi.org/10.37482/0536-1036-2022-1-9-22
- 28. *Колупаев Ю.Е.* Антиоксиданты растительной клетки, их роль в АФК-сигналинге и устойчивости растений // Успехи современной биологии. 2016. Т. 136. С. 181.
- 29. *Apel K., Hirt H.* Reactive oxygen species: metabolism, oxidative stress, and signal transduction // Annu. Rev. Plant Biol. 2004. V. 55. P. 373. https://doi.org/10.1146/annurev.arplant.55.031903.141701

- Mittler R. ROS are good // Trends in plant science. 2017. V. 2. P. 11. https://doi.org/10.1016/j.tplants.2016.08.002
- 31. Zeng J., Dong Z., Wu H., Tian Z., Zhao Z. Redox regulation of plant stem cell fate // The EMBO Journal. 2017. V. 36. 19. P. 2844. https://doi.org/10.15252/embj.201695955
- 32. de Marco A., Roubelakis-Angelakis K.A. The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts // Plant Physiol. 1996. V. 110. P. 137. https://doi.org/10.1104/pp.110.1.13
- Pradedova E.V., Isheeva O.D., Salyaev R.K. Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants // Russ. J. Plant Physiol. 2011. T. 58. P. 210. https://doi.org/10.1134/S1021443711020166
- Jajic I., Sarna T., Strzalka K. Senescence, stress, and reactive oxygen species // Plants. 2015. V 4. P. 393. https://doi.org/10.3390/plants4030393
- 35. Tsukagoshi H., Busch W., Benfey P.N. Transcriptional regulation of ROS controls transition from proliferation

- to differentiation in the root // Cell. 2010. V. 143. P. 606.
- https://doi.org/10.1016/j.cell.2010.10.020
- Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. Dual action of the active oxygen species during plant stress responses // Cell. Mol. Life Sci. 2000. V. 57. P. 779. https://doi.org/10.1007/s000180050041
- 37. *Messner B., Boll M., Berndt J.* L-phenylalanine ammonia-lyase in suspension culture cells of spruce (*Picea abies*) // Plant Cell, Tissue Organ Cult. 1991. V. 27. P. 267. https://doi.org/10.1007/BF00157590
- 38. *Газарян И.Г., Хушпульян Д.М., Тишков В.И.* Особенности структуры и механизма действия пероксидаз растений // Успехи биол. химии. 2006. Т. 46. С. 303.
- 39. *Tanaka Y., Uritani I.* Purification and properties of phenylalanine ammonia-lyase in cut-injured sweet potato // J. Biochem. 1977. V. 81. P. 963. https://doi.org/10.1093/oxfordjournals.jbchem.a131562
- 40. *Ling A.C.K., Yap C., Shaib J.M., Vilasini P.* Induction and morphogenesis of Phalaenopsis callus // J. Trop. Agric. Food Sci. 2007. V. 35. P. 147.