Метод декартова генетического программирования для анализа изображений развивающегося глаза мушки дрозофилы

Обложка

Цитировать

Полный текст

Аннотация

Методы автоматического выделения признаков привлекают все большее внимание при решении современных задач обработки изображений. Конфокальные изображения однослойного эпителия развивающегося глаза плодовой мушки дрозофилы представляют собой удобную модельную систему для разработки методов выделения сложных признаков. Целью данной работы было применение метода декартова генетического программирования для выявления границ омматидиев - светочувствительных единиц будущего глаза. Использование декартова генетического программирования для анализа картин экспрессии маркера Fasciclin III показало хорошие результаты. Это дает интересные перспективы для дальнейшего применения этой технологии с целью автоматического анализа изображений, полученных с помощью конфокальной микроскопии.

Об авторах

Н. А Данилов

Санкт-Петербургский политехнический университет Петра Великого

С.-Петербург, Россия

К. Н Козлов

Санкт-Петербургский политехнический университет Петра Великого

С.-Петербург, Россия

С. Ю Суркова

Санкт-Петербургский политехнический университет Петра Великого

Email: surkova_syu@spbstu.ru
С.-Петербург, Россия

М. Г Самсонова

Санкт-Петербургский политехнический университет Петра Великого

С.-Петербург, Россия

Список литературы

  1. И. А. Русанова, в сб. матер. Всероссийской школы-семинара (Саратов, 01 октября 2018 г.), под ред. Д. А. Усанова (Изд-во "Саратовский источник", Саратов, 2018), сс. 78-81.
  2. К. Н. Козлов, Е. В. Голубкова, Л. А. Мамон и др., Биофизика, 67, 283 (2022). DOI: 10.31857/ S0006302922020119
  3. J. P. Kumar, Devel. Dynamics, 241, 136 (2012). doi: 10.1002/dvdy.23707
  4. S. Surkova, J. Gorne, S. Nuzhdin, et al., Devel. Biol., 476, 41 (2021). doi: 10.1016/j.ydbio.2021.03.005.
  5. J. Y. Roignant and J. E Treisman, Int. J. Devel. Biol. 53, 795 (2009). doi: 10.1387/ijdb.072483jr
  6. J. E. Treisman, Wiley Interdisc. Rev. Devel. Biol., 2, 545 (2013). doi: 10.1002/wdev.100
  7. S. Ali, S. A. Signor, K. Kozlov, et al., Evolution & Development, 21, 157 (2019). doi: 10.1111/ede.12283
  8. L. Liu, L. Shao and X. Li, Inf. Sci., 316, 567 (2015). doi: 10.1016/j.ins.2014.06.030
  9. A. Lensen, H. Al-Sahaf, M. Zhang, et al., in EuroGP 2016. LNCS, Ed. by M. I. Heywood, J. McDermott, M. Castelli et al. (Springer, Cham, 2016), v. 9594, pp. 51-67. doi: 10.1007/978-3-319-30668-1_4
  10. S.Ruberto, V. Terragni, and J. Moore, in Parallel Problem Solving from Nature. Lecture Notes in Computer Science Image Feature Learning with Genetic Programming (Springer, Cham, 2020), pp. 63-78. doi: 10.1007/978-3-030-58115-2_5
  11. C. B. Perez and G. Olague, Intell. Data Anal., 17, 561 (2013). doi: 10.3233/IDA-130594
  12. W. A. Albukhanajer and J. A. Briffa, IEEE Trans. Cybern., 45, 1757 (2015). doi: 10.1109/TCYB. 2014.2360074
  13. J. F. Miller, P. Thomson, and T.C. Fogarty, in Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, Ed. by D. Quagliarella, J. Periaux, C. Poloni, and G. Winter (Wiley, 1998), pp. 105-131.
  14. M. A. Kramer, AIChE J. 37, 233 (1991). doi: 10.1002/aic.690370209
  15. A. Makhzani and B. J. Frey, in Advances in Neural Information Processing Systems, Ed. by C. Cortes, N. Lawrence, D. Lee, et al. (2015), pp. 2791-2799
  16. P. Vincent, H. Larochelle, Y. Bengio, et al., in Proc.Int. Conf. on Machine Learning, ICML 2008 (2008). pp. 1096-1103. doi: 10.1145/1390156.1390294
  17. P. M. Snow, A. J. Bieber, and C. S. Goodman, Cell, 59, 313 (1989). doi: 10.1016/0092-8674(89)90293-6
  18. K. Kozlov, A. Pisarev, J. Kaandorp, et al., in Abstr. Bookof the 9th Int. Conf. Syst. Biol. (Goteborg, 2008), p. 191.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».