Управление динамическими системами при ограничениях на входные и выходные сигналы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрено развитие метода, предложенного в публикации [1], на системы с произвольным соотношением количества входных и выходных сигналов. Получено решение, гарантирующее нахождение данных сигналов в заданном разработчиком множестве. Для решения задачи предложены две последовательные замены координат. Первая замена сводит выходную переменную объекта к новой переменной, размерность которой не превосходит размерности вектора управления. Вторая замена позволяет перейти от задачи управления с ограничениями к задаче управления без ограничений. В качестве иллюстрации работоспособности метода рассмотрено решение двух задач. Первая задача - управление по состоянию линейными системами с ограничениями на сигнал управления и фазовые переменные. Вторая задача - управление по выходу линейными системами с ограничением на выходной сигнал и сигнал управления. В обеих задачах проверка устойчивости замкнутой системы формулируется в терминах разрешимости линейных матричных неравенств. Полученные результаты сопровождаются примерами моделирования, иллюстрирующими эффективность предложенного метода.

Об авторах

И. Б Фуртат

Институт проблем машиноведения РАН

Email: cainenash@mail.ru
Санкт-Петербург

П. А Гущин

Институт проблем машиноведения РАН

Email: guschin.p@mail.ru
Санкт-Петербург

- Нгуен ба хю

Институт проблем машиноведения РАН

Автор, ответственный за переписку.
Email: leningrat206@gmail.com
Санкт-Петербург

Список литературы

  1. Фуртат И.Б., Гущин П.А. Управление динамическими объектами с гарантией нахождения регулируемого сигнала в заданном множестве // АиТ. 2021. № 4. С. 121-139.
  2. Furtat I., Gushchin P. Nonlinear feedback control providing plant output in given set // Int. J. Control. 2022. V. 95. N. 6. P. 1533-1542. https://doi.org/10.1080/00207179.2020.1861336
  3. Мирошник И.В., Никифоров В.О., Фрадков А.Л. Нелинейное и адаптивное управление сложными динамическими системами. СПб.: Наука, 2000.
  4. Spong M., Corke P., Lozano R. Nonlinear control of the reaction wheel pendulum // Automatica. 2001. V. 37. P. 1845-1851.
  5. Sun W., Su S.F., Xia J., Wu Y. Adaptive tracking control of wheeled inverted pendulums with periodic disturbances // IEEE Trans. Cybernetics. 2020. V. 50. No. 5. P. 1867-1876.
  6. Saleem O., Mahmood-ul-Hasan K. Adaptive State-space Control of Under-actuated Systems Using Error-magnitude Dependent Self-tuning of Cost Weighting-factors // Int. J. Control, Automat. Syst. 2021. V. 19. P. 931-941.
  7. Khalil H.K. Nonlinear Systems. 3rd edition. Pearson. 2001.
  8. Демьянов В.Ф., Рубинов А.М. Основы негладкого анализа и квазидифференциальное исчисление. М.: Наука, 1990.
  9. Dolgopolik M.V., Fradkov A.L. Nonsmooth and discontinuous speed-gradient algorithms // Nonlinear Anal. Hybrid Syst. 2017. V. 25. P. 99-113.
  10. Yakubovich V. S-procedure in nonlinear control theory // Vestn. Leningr. Univ. 1971. No. 1. P. 62-77.
  11. Polyak B.T. Convexity of quadratic transformations and its use in control and optimization // J. Optim. Theory Appl. 1998. V. 99. P. 553-583.
  12. Гусев С.В., Лихтарников А.Л. Очерк истории леммы Калмана-Попова-Якубовича и S-процедуры // АиТ. 2006. № 11. С. 77-121.
  13. Fridman E. A refined input delay approach to sampled-data control // Automatica. 2010. V. 46. P. 421-427.
  14. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях: Техника линейных матричных неравенств. М.: Ленанд, 2014.
  15. Назин С.А., Поляк Б.Т., Топунов М.В. Подавление ограниченных внешних возмущений с помощью метода инвариантных эллипсоидов // АиТ. 2007. № 3. С. 106-125.
  16. Leonessa A., Haddad W.M., Hayakawa T. Adaptive Tracking for Nonlinear Systems with Control Constraints // Proc. Amer. Control Conf. 2001. P. 1292-1297.
  17. Lavretsky E., Hovakimyan N. Positive μ-modification for Stable Adaptation in Dynamic Inversion Based Adaptive Control with Input Saturation // Proc. Amer. Control Conf. 2005. Portland, OR, USA. P. 3373-3378.
  18. Ioannou P.A., Sun J. Robust Adaptive Control. PTR Prentice-Hall, 1996.
  19. Narendra K.S., Annaswamy A.M. Stable Adaptive Systems. Dover Publications, 2012.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».